ﻻ يوجد ملخص باللغة العربية
Spin Seebeck effect (SSE) has been investigated in thin films of two Y-hexagonal ferrites Ba$_2$Zn$_{2}$Fe$_{12}$O$_{22}$ (Zn2Y) and Ba$_2$Co$_{2}$Fe$_{12}$O$_{22}$ (Co2Y) deposited by a spin-coating method on SrTiO$_3$(111) substrate. The selected hexagonal ferrites are both ferrimagnetic with similar magnetic moments at room temperature and both exhibit easy magnetization plane normal to $c$-axis. Despite that, SSE signal was only observed for Zn2Y, whereas no significant SSE signal was detected for Co2Y. We tentatively explain this different behavior by a presence of two different magnetic ions in Co2Y, whose random distribution over octahedral sites interferes the long range ordering and enhances the Gilbert damping constant. The temperature dependence of SSE for Zn2Y was measured and analyzed with regard to the heat flux and temperature gradient relevant to the SSE signal.
We report on the magnetic properties of zinc ferrite thin film deposited on SrTiO$_3$ single crystal using pulsed laser deposition. X-ray diffraction result indicates the highly oriented single phase growth of the film along with the presence of the
We report measurements of magnon spin transport in a spinel ferrite, magnesium aluminum ferrite $mathrm{MgAl_{0.5}Fe_{1.5}O_4}$ (MAFO), which has a substantial in-plane four-fold magnetic anisotropy. We observe spin diffusion lengths $> 0.8$ $mathrm{
Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al2O3(0001) substrate using PLD technique. The angle dependent magnetic hysteresis, remanent coercivity and temperature dependent coer
We evaluated the thermoelectric properties of longitudinal spin Seebeck devices by using ten different transition metals (TMs). Both the intensity and sign of spin Seebeck coefficients were noticeably dependent on the degree of the inverse spin Hall
Ferroelectric HfO2-based materials hold great potential for widespread integration of ferroelectricity into modern electronics due to their robust ferroelectric properties at the nanoscale and compatibility with the existing Si technology. Earlier wo