ترغب بنشر مسار تعليمي؟ اضغط هنا

Car following model simulating traffic breakdown and concave growth pattern of oscillations in traffic flow

207   0   0.0 ( 0 )
 نشر من قبل Junfang Tian
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Traffic breakdown, as one of the most puzzling traffic flow phenomena, is characterized by sharply decreasing speed, abruptly increasing density and in particular suddenly plummeting capacity. In order to clarify its root mechanisms and model its observed properties, this paper proposes a car-following model based on the following assumptions: (i) There exists a preferred time-varied and speed-dependent space gap that cars hope to maintain; (ii) there exists a region R restricted by two critical space gaps and two critical speeds in the car following region on the speed-space gap diagram, in which cars movements are determined by the weighted mean of the space- gap-determined acceleration and the speed-difference-determined acceleration; and (iii) out of region R, cars either accelerate to the free flow speed or decelerate to keep safety. Simulation results show that this model is able to simultaneously reproduce traffic breakdown and the transition from the synchronized traffic flow to wide moving jams. To our knowledge, this is the first car-following model that is able to fully depict traffic breakdown, spontaneous formation of jams, and the concave growth of the oscillations.



قيم البحث

اقرأ أيضاً

This paper has investigated the growth pattern of traffic oscillations by using vehicle trajectory data in a car following experiment. We measured the standard deviation of acceleration, emission and fuel consumption of each vehicle in the car-follow ing platoon. We found that: (1) Similar to the standard deviation of speed, these indices exhibit a common feature of concave growth pattern along vehicles in the platoon; (2) The emission and fuel consumption of each vehicle decrease remarkably when the average speed of the platoon increases from low value; However, when reaches 30km/h, the change of emission and fuel consumption with is not so significant; (3), the correlations of emission and fuel consumption with both the standard deviation of acceleration and the speed oscillation are strong. Simulations show that with the memory effect of drivers taken into account, the improved two-dimensional intelligent driver model is able to reproduce the common feature of traffic oscillation evolution quite well.
120 - Rui Jiang , Mao-Bin Hu , H.M.Zhang 2014
As a typical self-driven many-particle system far from equilibrium, traffic flow exhibits diverse fascinating non-equilibrium phenomena, most of which are closely related to traffic flow stability and specifically the growth/dissipation pattern of di sturbances. However, the traffic theories have been controversial due to a lack of precise traffic data. We have studied traffic flow from a new perspective by carrying out large-scale car-following experiment on an open road section, which overcomes the intrinsic deficiency of empirical observations. The experiment has shown clearly the nature of car-following, which runs against the traditional traffic flow theory. Simulations show that by removing the fundamental notion in the traditional car-following models and allowing the traffic state to span a two-dimensional region in velocity-spacing plane, the growth pattern of disturbances has changed qualitatively and becomes qualitatively or even quantitatively in consistent with that observed in the experiment.
Understanding the mechanisms responsible for the emergence and evolution of oscillations in traffic flow has been subject to intensive research by the traffic flow theory community. In our previous work, we proposed a new mechanism to explain the gen eration of traffic oscillations: traffic instability caused by the competition between speed adaptation and the cumulative effect of stochastic factors. In this paper, by conducting a closer examination of car following data obtained in a 25-car platoon experiment, we discovered that the speed difference plays a more important role on car-following dynamics than the spacing, and when its amplitude is small, the growth of oscillations is mainly determined by the stochastic factors that follow the mean reversion process; when its amplitude increases, the growth of the oscillations is determined by the competition between the stochastic factors and the speed difference. An explanation is then provided, based on the above findings, to why the speed variance in the oscillatory traffic grows in a concave way along the platoon. Finally, we proposed a mode-switching stochastic car-following model that incorporates the speed adaptation and spacing indifference behaviors of drivers, which captures the observed characteristics of oscillation and discharge rate. Sensitivity analysis shows that reaction delay only has slight effect but indifference region boundary has significant on oscillation growth rate and discharge rate.
120 - Bernardo A. Mello 2020
Minimizing social contact is an important tool to reduce the spread of diseases, but harms peoples well-being. This and other, more compelling reasons, urge people to walk outside periodically. The present simulation explores how organizing the traff ic of pedestrians affects the number of walking or running people passing by each other. By applying certain rules this number can be significantly reduced, thus reducing the contribution of person-to-person contagious to the basic reproductive number, R0. One example is the traffic of pedestrians on sidewalks. Another is the use of walking or running tracks in parks. It is demonstrated here that the number of people crossing each other can be drastically reduced if one-way traffic is enforced and runners are separated from walkers.
This paper firstly show that 2 Dimensional Intelligent Driver Model (Jiang et al., PloS one, 9(4), e94351, 2014) is not able to replicate the synchronized traffic flow. Then we propose an improved model by considering the difference between the drivi ng behaviors at high speeds and that at low speeds. Simulations show that the improved model can reproduce the phase transition from synchronized flow to wide moving jams, the spatiotemporal patterns of traffic flow induced by traffic bottleneck, and the evolution concavity of traffic oscillations (i.e. the standard deviation of the velocities of vehicles increases in a concave/linear way along the platoon). Validating results show that the empirical time series of traffic speed obtained from Floating Car Data can be well simulated as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا