ﻻ يوجد ملخص باللغة العربية
We present an analysis of new and published data on P/2013 R3, the first asteroid detected while disintegrating. Thirteen discrete components are measured in the interval between UT 2013 October 01 and 2014 February 13. We determine a mean, pair-wise velocity dispersion amongst these components of $Delta v = 0.33pm0.03$ m s$^{-1}$ and find that their separation times are staggered over an interval of $sim$5 months. Dust enveloping the system has, in the first observations, a cross-section $sim$30 km$^2$ but fades monotonically at a rate consistent with the action of radiation pressure sweeping. The individual components exhibit comet-like morphologies and also fade except where secondary fragmentation is accompanied by the release of additional dust. We find only upper limits to the radii of any embedded solid nuclei, typically $sim$100 to 200 m (geometric albedo 0.05 assumed). Combined, the components of P/2013 R3 would form a single spherical body with radius $lesssim$400 m, which is our best estimate of the size of the precursor object. The observations are consistent with rotational disruption of a weak (cohesive strength $sim$50 to 100 N m$^{-2}$) parent body, $sim$400 m in radius. Estimated radiation (YORP) spin-up times of this parent are $lesssim$1 Myr, shorter than the collisional lifetime. If present, water ice sublimating at as little as 10$^{-3}$ kg s$^{-1}$ could generate a torque on the parent body rivaling the YORP torque. Under conservative assumptions about the frequency of similar disruptions, the inferred asteroid debris production rate is $gtrsim$10$^3$ kg s$^{-1}$, which is at least 4% of the rate needed to maintain the Zodiacal Cloud.
The unique inner-belt asteroid 311P/PANSTARRS (formerly P/2013 P5) is notable for its sporadic, comet-like ejection of dust in nine distinct epochs spread over $sim$250 days in 2013. This curious behavior has been interpreted as the product of locali
After the early observations of the disrupted asteroid P/2016 G1 with the 10.4m Gran Telescopio Canarias (GTC), and the modeling of the dust ejecta, we have performed a follow-up observational campaign of this object using the Hubble Space Telescope
Comet P/2010A2 LINEAR is a good candidate for membership with the Main Belt Comet family. It was observed with several telescopes (ESO NTT, La Silla; Gemini North, Mauna Kea; UH 2.2m, Mauna Kea) from 14 Jan. until 19 Feb. 2010 in order to characteriz
Observations of active asteroid P/2017 S5 when near perihelion reveal the ejection of large (0.1 to 10 mm) particles at 0.2 to 2 m/s speeds, with estimated mass-loss rates of a few kg/s. The protracted nature of the mass loss (continuous over 150 day
We present deep imaging observations, orbital dynamics, and dust tail model analyses of the double-component asteroid P/2016 J1 (J1-A and J1-B). The observations were acquired at the Gran Telescopio Canarias (GTC) and the Canada-France-Hawaii Telesco