ﻻ يوجد ملخص باللغة العربية
Observations of active asteroid P/2017 S5 when near perihelion reveal the ejection of large (0.1 to 10 mm) particles at 0.2 to 2 m/s speeds, with estimated mass-loss rates of a few kg/s. The protracted nature of the mass loss (continuous over 150 days) is compatible with a sublimation origin, meaning that this object is likely an ice-bearing main-belt comet. Equilibrium sublimation of exposed water ice covering as little as 0.1 sq. km can match the data. Observations a year after perihelion show the object in an inactive state from which we deduce a nucleus effective radius 450(+100/-60) m (albedo 0.06+/-0.02 assumed). The gravitational escape speed from a body of this size is just 0.3 m/s, comparable to the inferred ejection speed of the dust. Time-series photometry provides tentative evidence for rapid rotation (lightcurve period 1.4 hour) that may also play a role in the loss of mass and which, if real, is a likely consequence of spin-up by sublimation torques. P/2017 S5 shares both physical and orbital similarities with the split active asteroid pair P/2016 J1-A and J1-B, and all three objects are likely members of the 7 Myr old, collisionally produced, Theobalda family.
In this note we have shown that a newly discovered comet P/2017 S5 (ATLAS), that moves around the Sun in an asteroid-like orbit, is a member of the Theobalda asteroid family.
The dust emission from active asteroids is likely driven by collisions, fast rotation, sublimation of embedded ice, and combinations of these. Characterising these processes leads to a better understanding of their respective influence on the evoluti
We present deep imaging observations, orbital dynamics, and dust tail model analyses of the double-component asteroid P/2016 J1 (J1-A and J1-B). The observations were acquired at the Gran Telescopio Canarias (GTC) and the Canada-France-Hawaii Telesco
The Asteroid Terrestrial-impact Last Alert System (ATLAS) is an all-sky survey primarily aimed at detecting potentially hazardous near-Earth asteroids. Apart from the astrometry of asteroids, it also produces their photometric measurements that conta
Main-belt asteroid (6478) Gault was observed to show cometary features in early 2019. To investigate the cause, we conducted {it BVR} observations at Xingming Observatory, China, from 2019 January to April. The two tails were formed around 2018 Octob