ﻻ يوجد ملخص باللغة العربية
Turbulence models attempt to account for unresolved dynamics and diffusion in hydrodynamical simulations. We develop a common framework for two-equation Reynolds-Averaged Navier-Stokes (RANS) turbulence models, and we implement six models in the Athena code. We verify each implementation with the standard subsonic mixing layer, although the level of agreement depends on the definition of the mixing layer width. We then test the validity of each model into the supersonic regime, showing that compressibility corrections can improve agreement with experiment. For models with buoyancy effects, we also verify our implementation via the growth of the Rayleigh-Taylor instability in a stratified medium. The models are then applied to the ubiquitous astrophysical shock-cloud interaction in three dimensions. We focus on the mixing of shock and cloud material, comparing results from turbulence models to high-resolution simulations (up to 200 cells per cloud radius) and ensemble-averaged simulations. We find that the turbulence models lead to increased spreading and mixing of the cloud, although no two models predict the same result. Increased mixing is also observed in inviscid simulations at resolutions greater than 100 cells per radius, which suggests that the turbulent mixing begins to be resolved.
We study density fluctuations in supersonic turbulence using both theoretical methods and numerical simulations. A theoretical formulation is developed for the probability distribution function (PDF) of the density at steady state, connecting it to t
The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. However, the formation of fully developed turbulence has ofte
The rich structure that we observe in molecular clouds is due to the interplay between strong magnetic fields and supersonic (turbulent) velocity fluctuations. The velocity fluctuations interact with the magnetic field, causing it too to fluctuate. U
Using the adaptive mesh refinement code MG, we perform hydrodynamic simulations of the interaction of a shock with a molecular cloud evolving due to thermal instability and gravity. To explore the relative importance of these processes, three case st
We revisit the problem on the inner structure of shock waves in simple gases modelized by the Boltzmann kinetic equation. In cite{pomeau1987shock}, a self-similarity approach was proposed for infinite total cross section resulting from a power law in