ترغب بنشر مسار تعليمي؟ اضغط هنا

Hiring Expert Consultants in E-Healthcare: A Two Sided Matching Approach

86   0   0.0 ( 0 )
 نشر من قبل Sajal Mukhopadhyay
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Very often in some censorious healthcare scenario, there may be a need to have some expert consultancies (especially by doctors) that are not available in-house to the hospital. With the advancement in technologies (such as video conferencing, smartphone, etc.), it has become reality that, for the critical medical cases in the hospitals, expert consultants (ECs) from around the world could be hired, who will serve the patients by their physical or virtual presence. Earlier, this interesting healthcare scenario of hiring the ECs (mainly doctors) from outside of the hospitals had been studied with the robust concepts of mechanism design with or without money. We have tried to model the ECs (mainly doctors) hiring problem as a two-sided matching problem. In this paper, for the first time, to the best of our knowledge, we explore the more realistic two-sided matching in our set-up, where the members of the two participating communities, namely patients and doctors are revealing the strict preference ordering over all the members of the opposite community for a stipulated amount of time. We assume that patients and doctors are strategic in nature. With the theoretical analysis, we demonstrate that the proposed mechanism that results in a stable allocation of doctors to patients is strategy-proof (or truthful) and optimal. The proposed mechanism is also validated with exhaustive experiments.



قيم البحث

اقرأ أيضاً

The doctors (or expert consultants) are the critical resources on which the success of critical medical cases are heavily dependent. With the emerging technologies (such as video conferencing, smartphone, etc.) this is no longer a dream but a fact, t hat for critical medical cases in a hospital, expert consultants from around the world could be hired, who may be present physically or virtually. Earlier, this interesting situation by taking the expert consultancies from outside the hospital had been studied, but under monetary perspective. In this paper, for the first time, to the best of our knowledge, we investigate the situation, where the below income group (BIG) people of the society may be served efficiently through the expert consultancy by the renowned doctors from outside of the hospital under zero budget. This will help us saving many lives which will fulfil the present day need of biomedical research. We propose three mechanisms: Random pick-assign mechanism (RanPAM), Truthful optimal allocation mechanism (TOAM), and Truthful optimal allocation mechanism for incomplete preferences (TOAM-IComP) to allocate the doctor to the patient. With theoretical analysis, we demonstrate that the TOAM is strategy-proof, and exhibits a unique core property. The mechanisms are also validated with exhaustive experiments.
Throughout the past decade, there has been an extensive research on scheduling the hospital resources such as the operation theatre(s) (OTs) and the experts (such as nurses, doctors etc.) inside the hospitals. With the technological growth, mainly ad vancement in communication media (such as smart phones, video conferencing, smart watches etc.) one may think of taking the expertise by the doctors (distributed around the globe) from outside the in-house hospitals. Earlier this interesting situation of hiring doctors from outside the hospitals has been studied from monetary (with patient having infinite budget) and non-monetary perspectives in strategic setting. In this paper, the more realistic situation is studied in terms of hiring the doctors from outside the hospital when a patient is constrained by budget. Our proposed mechanisms follow the two pass mechanism design framework each consisting of allocation rule and payment rule. Through simulations, we evaluate the performance and validate our proposed mechanisms.
We initiate the use of a multi-layer neural network to model two-sided matching and to explore the design space between strategy-proofness and stability. It is well known that both properties cannot be achieved simultaneously but the efficient fronti er in this design space is not understood. We show empirically that it is possible to achieve a good compromise between stability and strategy-proofness-substantially better than that achievable through a convex combination of deferred acceptance (stable and strategy-proof for only one side of the market) and randomized serial dictatorship (strategy-proof but not stable).
Two-sided matching platforms provide users with menus of match recommendations. To maximize the number of realized matches between the two sides (referred here as customers and suppliers), the platform must balance the inherent tension between recomm ending customers more potential suppliers to match with and avoiding potential collisions. We introduce a stylized model to study the above trade-off. The platform offers each customer a menu of suppliers, and customers choose, simultaneously and independently, either a supplier from their menu or to remain unmatched. Suppliers then see the set of customers that have selected them, and choose to either match with one of these customers or to remain unmatched. A match occurs if a customer and a supplier choose each other (in sequence). Agents choices are probabilistic, and proportional to public scores of agents in their menu and a score that is associated with remaining unmatched. The platforms problem is to construct menus for costumers to maximize the number of matches. This problem is shown to be strongly NP-hard via a reduction from 3-partition. We provide an efficient algorithm that achieves a constant-factor approximation to the expected number of matches.
This paper is an attempt to deal with the recent realization (Vazirani, Yannakakis 2021) that the Hylland-Zeckhauser mechanism, which has remained a classic in economics for one-sided matching markets, is likely to be highly intractable. HZ uses the power of a pricing mechanism, which has endowed it with nice game-theoretic properties. Hosseini and Vazirani (2021) define a rich collection of Nash-bargaining-based models for one-sided and two-sided matching markets, in both Fisher and Arrow-Debreu settings, together with implementations using available solvers, and very encouraging experimental results. This naturally raises the question of finding efficient combinatorial algorithms for these models. In this paper, we give efficient combinatorial algorithms based on the techniques of multiplicative weights update (MWU) and conditional gradient descent (CGD) for several one-sided and two-sided models defined in HV 2021. Additionally, we define for the first time a Nash-bargaining-based model for non-bipartite matching markets and solve it using CGD. Furthermore, in every case, we study not only the Fisher but also the Arrow-Debreu version; the latter is also called the exchange version. We give natural applications for each model studied. These models inherit the game-theoretic and computational properties of Nash bargaining. We also establish a deep connection between HZ and the Nash-bargaining-based models, thereby confirming that the alternative to HZ proposed in HV 2021 is a principled one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا