ﻻ يوجد ملخص باللغة العربية
Attributed graphs model real networks by enriching their nodes with attributes accounting for properties. Several techniques have been proposed for partitioning these graphs into clusters that are homogeneous with respect to both semantic attributes and to the structure of the graph. However, time and space complexities of state of the art algorithms limit their scalability to medium-sized graphs. We propose SToC (for Semantic-Topological Clustering), a fast and scalable algorithm for partitioning large attributed graphs. The approach is robust, being compatible both with categorical and with quantitative attributes, and it is tailorable, allowing the user to weight the semantic and topological components. Further, the approach does not require the user to guess in advance the number of clusters. SToC relies on well known approximation techniques such as bottom-k sketches, traditional graph-theoretic concepts, and a new perspective on the composition of heterogeneous distance measures. Experimental results demonstrate its ability to efficiently compute high-quality partitions of large scale attributed graphs.
Given a graph G where each node is associated with a set of attributes, and a parameter k specifying the number of output clusters, k-attributed graph clustering (k-AGC) groups nodes in G into k disjoint clusters, such that nodes within the same clus
We study the evolution of cooperation in populations where individuals play prisoners dilemma on a network. Every node of the network corresponds on an individual choosing whether to cooperate or defect in a repeated game. The players revise their ac
Bipartite networks are a common type of network data in which there are two types of vertices, and only vertices of different types can be connected. While bipartite networks exhibit community structure like their unipartite counterparts, existing ap
Seeding then expanding is a commonly used scheme to discover overlapping communities in a network. Most seeding methods are either too complex to scale to large networks or too simple to select high-quality seeds, and the non-principled functions use
Graphs are used to model interactions in a variety of contexts, and there is a growing need to quickly assess the structure of such graphs. Some of the most useful graph metrics are based on triangles, such as those measuring social cohesion. Algorit