ﻻ يوجد ملخص باللغة العربية
What will the future of UAV cellular communications be? In this tutorial article, we address such a compelling yet difficult question by embarking on a journey from 5G to 6G and sharing a large number of realistic case studies supported by original results. We start by overviewing the status quo on UAV communications from an industrial standpoint, providing fresh updates from the 3GPP and detailing new 5G NR features in support of aerial devices. We then show the potential and the limitations of such features. In particular, we demonstrate how sub-6 GHz massive MIMO can successfully tackle cell selection and interference challenges, we showcase encouraging mmWave coverage evaluations in both urban and suburban/rural settings, and we examine the peculiarities of direct device-to-device communications in the sky. Moving on, we sneak a peek at next-generation UAV communications, listing some of the use cases envisioned for the 2030s. We identify the most promising 6G enablers for UAV communication, those expected to take the performance and reliability to the next level. For each of these disruptive new paradigms (non-terrestrial networks, cell-free architectures, artificial intelligence, reconfigurable intelligent surfaces, and THz communications), we gauge the prospective benefits for UAVs and discuss the main technological hurdles that stand in the way. All along, we distil our numerous findings into essential takeaways, and we identify key open problems worthy of further study.
We consider a cellular network deployment where UAV-to-UAV (U2U) transmit-receive pairs share the same spectrum with the uplink (UL) of cellular ground users (GUEs). For this setup, we focus on analyzing and comparing the performance of two spectrum
Non-terrestrial networks (NTNs) traditionally had certain limited applications. However, the recent technological advancements opened up myriad applications of NTNs for 5G and beyond networks, especially when integrated into terrestrial networks (TNs
In this letter, we study the secure communication problem in the unmanned aerial vehicle (UAV) enabled networks aided by an intelligent reflecting surface (IRS) from the physical-layer security perspective. Specifically, the IRS is deployed to assi
As a revolutionary paradigm for controlling wireless channels, reconfigurable intelligent surfaces (RISs) have emerged as a candidate technology for future 6G networks. However, due to the multiplicative fading effect, RISs only achieve a negligible
We introduce the concept of using unmanned aerial vehicles (UAVs) as drone base stations for in-band Integrated Access and Backhaul (IB-IAB) scenarios for 5G networks. We first present a system model for forward link transmissions in an IB-IAB multi-