ﻻ يوجد ملخص باللغة العربية
We briefly discuss the notion of the Lagrange multiplier for a linear constraint in the Hilbert space setting, and we prove that the pressure $p$ appearing in the stationary Stokes equations is the Lagrange multiplier of the constraint $mathrm{div}, u =0$.
In this paper we address the large-scale regularity theory for the stationary Navier-Stokes equations in highly oscillating bumpy John domains. These domains are very rough, possibly with fractals or cusps, at the microscopic scale, but are amenable
We study the stationary nonhomogeneous Navier--Stokes problem in a two dimensional symmetric domain with a semi-infinite outlet (for instance, either parabo-loidal or channel-like). Under the symmetry assumptions on the domain, boundary value and ext
We show that non-uniqueness of the Leray-Hopf solutions of the Navier--Stokes equation on the hyperbolic plane observed in arXiv:1006.2819 is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on the hyperbolic spac
In this paper, we consider the energy conservation and regularity of the weak solution $u$ to the Navier-Stokes equations in the endpoint case. We first construct a divergence-free field $u(t,x)$ which satisfies $lim_{tto T}sqrt{T-t}||u(t)||_{BMO}<in
By using a set of scaling limits, the authors in cite{ADFL,SS} proposed a framework of deriving the Hall-MHD equations from the two-fluids Euler-Maxwell equations for electrons and ions. In this paper, we derive the Hall-MHD equations from the Navier