ترغب بنشر مسار تعليمي؟ اضغط هنا

New method for torque magnetometry using a commercially available membrane-type surface-stress sensor

89   0   0.0 ( 0 )
 نشر من قبل Hideyuki Takahashi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new method for torque magnetometry by using a commercially available membrane-type surface-stress sensor (MSS). This sensor has a silicon membrane supported by four beams in which piezoresistive paths are integrated. Although originally developed as a gas sensor, it can be used for torque measurement by modifying its on-chip wiring. We demonstrate the magnetic-torque measurement of submillimeter-sized crystals at a low temperature and in strong magnetic fields. This MSS can observe de-Haas-van-Alphen oscillation, which confirms that it can be an alternative tool for self-sensitive microcantilevers.

قيم البحث

اقرأ أيضاً

This article addresses the formulation and validation of a simple PC based software application developed for simulating commercially available solar panels. The important feature of this application is its capability to produce speedy results in the form of solar panel output characteristics at given environmental conditions by using minimal input data. Besides, it is able to deliver critical information about the maximum power point of the panel at a given environmental condition in quick succession. The application is based on a standard equation which governs solar panels and works by means of estimating unknown parameters in the equation to fit a given solar panel. The process of parameter estimation is described in detail with the aid of equations and data of a commercial solar panel. A validation of obtained results for commercial solar panels is also presented by comparing the panel manufacturers results with the results generated by the application. In addition, implications of the obtained results are discussed along with possible improvements to the developed software application.
71 - M. Posik , B. Surrow 2018
Many experiments are currently using or proposing to use large area GEM foils in their detectors, which is creating a need for commercially available GEM foils. Currently CERN is the only main distributor of large GEM foils, however with the growing interest in GEM technology keeping up with the increasing demand for GEMs will be difficult. We present here an update on the assembly and testing of triple-GEM tracking detectors utilizing single-masked $40 times 40$ cm$^2$ commercial GEM foils produced by Tech-Etch. The triple-GEM detectors will allow us to characterize the overall quality of these Tech-Etch foils through gain, efficiency, and energy resolution measurements. This will be done by constructing four single-mask triple-GEM detectors, using foils manufactured by Tech-Etch, which follow the design used by the STAR Forward GEM Tracker (FGT). The stack is formed by gluing the foils to the frames and then gluing the frames together. The stack also includes a Tech-Etch produced high voltage foil and a 2D $r-phi$ readout foil. While one of the four triple-GEM detectors will be built identically to the STAR FGT, the other three will investigate ways in which to further decrease the material budget and increase the efficiency of the detector by incorporating perforated Kapton spacer rings rather than G10 spacing grids to reduce the dead area of the detector.
119 - M. Posik , B. Surrow 2016
Many experiments are currently using or proposing to use large area GEM foils in their detectors, which is creating a need for commercially available GEM foils. Currently CERN is the only main distributor of large GEM foils, however with the growing interest in GEM technology keeping up with the increasing demand for GEMs will be difficult. Thus the commercialization of GEMs up to 50 $times$ 50 cm$^2$ has been established by Tech-Etch Inc. of Plymouth, MA, USA using the single-mask technique. The electrical performance and optical quality of the single-mask GEM foils have been found to be on par with those produced by CERN. The next critical step towards validating the Tech-Etch single-mask GEM foils is to test their performance under physics conditions. These measurements will allow us to quantify and compare the gain and efficiency of the detector to other triple-GEM detectors. This will be done by constructing several single-mask triple-GEM detectors, using foils manufactured by Tech-Etch, which follow the design used by the STAR Forward GEM Tracker (FGT). These detectors will investigate ways in which to further decrease the material budget and increase the efficiency of the detector by incorporating perforated Kapton spacer rings rather than G10 spacing grids to reduce the dead area of the detector. The materials and tooling needed to assemble the triple-GEM detectors have been acquired. The GEM foils have been electrically tested, and a handful have been optically scanned. We found these results to be consistent with GEM foils produced by CERN. With the success of these initial tests, construction of the triple-GEM detectors is now under way.
Black phosphorus (BP) is receiving significant attention because of its direct 0.4-1.5 eV layer-dependent band gap and high mobility. Because BP devices rely on exfoliation from bulk crystals, there is a need to understand native impurities and defec ts in the source material. In particular, samples are typically p-doped, but the source of the doping is not well understood. Here, we use scanning tunneling microscopy and spectroscopy to compare atomic defects of BP samples from two commercial sources. Even though the sources produced crystals with an order of magnitude difference in impurity atoms, we observed a similar defect density and level of p-doping. We attribute these defects to phosphorus vacancies and provide evidence that they are the source of the p-doping. We also compare these native defects to those induced by air exposure and show they are distinct and likely more important for control of electronic structure. These results indicate that impurities in BP play a minor role compared to vacancies, which are prevalent in commercially-available materials, and call for better control of vacancy defects.
56 - Xin He , Y. Liu , P. Beckett 2020
A CMY colour camera differs from its RGB counterpart in that it employs a subtractive colour space of cyan, magenta and yellow. CMY cameras tend to performs better than RGB cameras in low light conditions due to their much higher transmittance. Howev er, conventional CMY colour filter technology made of pigments and dyes are limited in performance for the next generation image sensors with submicron pixel sizes. These conventional filters are difficult to fabricate at nanoscale dimensions as they use their absorption properties to subtract colours. This paper presents a CMOS compatible nanoscale thick CMY colour mosaic made of Al-TiO2-Al nanorods forming an array 0.82 million colour pixels of 4.4 micron each, arranged in a CMYM pattern. The colour mosaic was then integrated onto a MT9P031 monochrome image sensor to make a CMY camera and the colour imaging demonstrated using a 12 colour Macbeth chart. The developed technology will have applications in astronomy, low exposure time imaging in biology and photography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا