ترغب بنشر مسار تعليمي؟ اضغط هنا

Perspective: Energy Landscapes for Machine Learning

69   0   0.0 ( 0 )
 نشر من قبل Dhagash Mehta
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine learning techniques are being increasingly used as flexible non-linear fitting and prediction tools in the physical sciences. Fitting functions that exhibit multiple solutions as local minima can be analysed in terms of the corresponding machine learning landscape. Methods to explore and visualise molecular potential energy landscapes can be applied to these machine learning landscapes to gain new insight into the solution space involved in training and the nature of the corresponding predictions. In particular, we can define quantities analogous to molecular structure, thermodynamics, and kinetics, and relate these emergent properties to the structure of the underlying landscape. This Perspective aims to describe these analogies with examples from recent applications, and suggest avenues for new interdisciplinary research.



قيم البحث

اقرأ أيضاً

244 - Stefan Boettcher , 2021
Cooperative events requiring anomalously large fluctuations are a defining characteristic for the onset of glassy relaxation across many materials. The importance of such intermittent events has been noted in systems as diverse as superconductors, me tallic glasses, gels, colloids, and granular piles. Here, we show that prohibiting the attainment of new record-high energy fluctuations -- by explicitly imposing a ``lid on the fluctuation spectrum -- impedes further relaxation in the glassy phase. This lid allows us to directly measure the impact of record events on the evolving system in extensive simulations of aging in such vastly distinct glass formers as spin glasses and tapped granular piles. Interpreting our results in terms of a dynamics of records succeeds in explaining the ubiquity of both, the logarithmic decay of the energy and the memory effects encoded in the scaling of two-time correlation functions of aging systems.
Neuroevolution, a field that draws inspiration from the evolution of brains in nature, harnesses evolutionary algorithms to construct artificial neural networks. It bears a number of intriguing capabilities that are typically inaccessible to gradient -based approaches, including optimizing neural-network architectures, hyperparameters, and even learning the training rules. In this paper, we introduce a quantum neuroevolution algorithm that autonomously finds near-optimal quantum neural networks for different machine learning tasks. In particular, we establish a one-to-one mapping between quantum circuits and directed graphs, and reduce the problem of finding the appropriate gate sequences to a task of searching suitable paths in the corresponding graph as a Markovian process. We benchmark the effectiveness of the introduced algorithm through concrete examples including classifications of real-life images and symmetry-protected topological states. Our results showcase the vast potential of neuroevolution algorithms in quantum machine learning, which would boost the exploration towards quantum learning supremacy with noisy intermediate-scale quantum devices.
The classification of big data usually requires a mapping onto new data clusters which can then be processed by machine learning algorithms by means of more efficient and feasible linear separators. Recently, Lloyd et al. have advanced the proposal t o embed classical data into quantum ones: these live in the more complex Hilbert space where they can get split into linearly separable clusters. Here, we implement these ideas by engineering two different experimental platforms, based on quantum optics and ultra-cold atoms respectively, where we adapt and numerically optimize the quantum embedding protocol by deep learning methods, and test it for some trial classical data. We perform also a similar analysis on the Rigetti superconducting quantum computer. Therefore, we find that the quantum embedding approach successfully works also at the experimental level and, in particular, we show how different platforms could work in a complementary fashion to achieve this task. These studies might pave the way for future investigations on quantum machine learning techniques especially based on hybrid quantum technologies.
82 - Jie M. Zhang 2019
This paper provides a comprehensive survey of Machine Learning Testing (ML testing) research. It covers 144 papers on testing properties (e.g., correctness, robustness, and fairness), testing components (e.g., the data, learning program, and framewor k), testing workflow (e.g., test generation and test evaluation), and application scenarios (e.g., autonomous driving, machine translation). The paper also analyses trends concerning datasets, research trends, and research focus, concluding with research challenges and promising research directions in ML testing.
Representation learning constructs low-dimensional representations to summarize essential features of high-dimensional data. This learning problem is often approached by describing various desiderata associated with learned representations; e.g., tha t they be non-spurious, efficient, or disentangled. It can be challenging, however, to turn these intuitive desiderata into formal criteria that can be measured and enhanced based on observed data. In this paper, we take a causal perspective on representation learning, formalizing non-spuriousness and efficiency (in supervised representation learning) and disentanglement (in unsupervised representation learning) using counterfactual quantities and observable consequences of causal assertions. This yields computable metrics that can be used to assess the degree to which representations satisfy the desiderata of interest and learn non-spurious and disentangled representations from single observational datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا