ترغب بنشر مسار تعليمي؟ اضغط هنا

Clocking the Ultrafast Electron Cooling in Anatase Titanium Dioxide Nanoparticles

66   0   0.0 ( 0 )
 نشر من قبل Edoardo Baldini Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent identification of strongly bound excitons in room temperature anatase TiO$_2$ single crystals and nanoparticles underscores the importance of bulk many-body effects in samples used for applications. Here, for the first time, we unravel the interplay between many-body interactions and correlations in highly-excited anatase TiO$_2$ nanoparticles using ultrafast two-dimensional deep-ultraviolet spectroscopy. With this approach, under non-resonant excitation, we disentangle the optical nonlinearities contributing to the bleach of the lowest direct exciton peak. This allows us to clock the ultrafast timescale of the hot electron thermalization in the conduction band with unprecedented temporal resolution, which we determine to be < 50 fs, due to the strong electron-phonon coupling in the material. Our findings call for the design of alternative resonant excitation schemes in photonics and nanotechnology.

قيم البحث

اقرأ أيضاً

We report on the optical properties of magnetic cobalt-doped anatase phase titanium dioxide Ti_{1-x}Co_{x}O_{2-d} films for low doping concentrations, 0 <= x <= 0.02, in the spectral range 0.2 to 5 eV. For well oxygenated films (d << 1) the optical c onductivity is characterized by an absence of optical absorption below an onset of interband transitions at 3.6 eV and a blue shift of the optical band edge with increasing Co concentration. The absence of below band gap absorption is inconsistent with theoretical models which contain midgap magnetic impurity bands and suggests that strong on-site Coulomb interactions shift the O-band to Co-level optical transitions to energies above the gap.
The way nuclear motion affects electronic responses has become a very hot topic in materials science. Coherent acoustic phonons can dynamically modify optical, magnetic and mechanical properties at ultrasonic frequencies, with promising applications as sensors and transducers. Here, by means of ultrafast broadband deep-ultraviolet spectroscopy, we demonstrate that coherent acoustic phonons confined in anatase TiO$_2$ nanoparticles can selectively modulate the oscillator strength of the two-dimensional bound excitons supported by the material. We use many-body perturbation-theory calculations to reveal that the deformation potential is the mechanism behind the generation of the observed coherent acoustic wavepackets. Our results offer a route to manipulate and dynamically tune the properties of excitons in the deep-ultraviolet at room temperature.
We demonstrate that highly-ordered two-dimensional crystals of ligand-capped gold nanoparticles display a local photo-mechanical stiffness as high as that of solids such as graphite. In out-of equilibrium electron diffraction experiments, a strong te mperature jump is induced in a thin film with a femtosecond laser pulse. The initial electronic excitation transfers energy to the underlying structural degrees of freedom, with a rate generally proportional to the stiffness of the material. With femtosecond small-angle electron diffraction, we observe the temporal evolution of the diffraction feature associated to the nearest-neighbor nanoparticle distance. The Debye-Waller decay for the octanethiol-capped nanoparticles supracrystal, in particular, is found to be unexpectedly fast, almost as fast as the stiffest solid known and observed by the same technique, i.e. graphite. Our observations unravel that local stiffness in a dense supramolecular assembly can be created by Van der Waals interactions up to a level comparable to crystalline systems characterized by covalent bonding.
Long regarded as a model system for studying insulator-to-metal phase transitions, the correlated electron material vanadium dioxide (VO$_2$) is now finding novel uses in device applications. Two of its most appealing aspects are its accessible trans ition temperature ($sim$341 K) and its rich phase diagram. Strain can be used to selectively stabilize different VO$_2$ insulating phases by tuning the competition between electron and lattice degrees of freedom. It can even break the mesoscopic spatial symmetry of the transition, leading to a quasi-periodic ordering of insulating and metallic nanodomains. Nanostructuring of strained VO$_2$ could potentially yield unique components for future devices. However, the most spectacular property of VO$_2$ - its ultrafast transition - has not yet been studied on the length scale of its phase heterogeneity. Here, we use ultrafast near-field microscopy in the mid-infrared to study individual, strained VO$_2$ nanobeams on the 10 nm scale. We reveal a previously unseen correlation between the local steady-state switching susceptibility and the local ultrafast response to below-threshold photoexcitation. These results suggest that it may be possible to tailor the local photo-response of VO$_2$ using strain and thereby realize new types of ultrafast nano-optical devices.
A new method to fabricate non-superconducting mesoscopic tunnel junctions by oxidation of Ti is presented. The fabrication process uses conventional electron beam lithography and shadow deposition through an organic resist mask. Superconductivity in Ti is suppressed by performing the deposition under a suitable background pressure. We demonstrate the method by making a single electron transistor which operated at $T < 0.4$ K and had a moderate charge noise of $2.5 times 10^{-3}$ e/$sqrt{mathrm{Hz}}$ at 10 Hz. Based on nonlinearities in the current-voltage characteristics at higher voltages, we deduce the oxide barrier height of approximately 110 mV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا