ﻻ يوجد ملخص باللغة العربية
Long regarded as a model system for studying insulator-to-metal phase transitions, the correlated electron material vanadium dioxide (VO$_2$) is now finding novel uses in device applications. Two of its most appealing aspects are its accessible transition temperature ($sim$341 K) and its rich phase diagram. Strain can be used to selectively stabilize different VO$_2$ insulating phases by tuning the competition between electron and lattice degrees of freedom. It can even break the mesoscopic spatial symmetry of the transition, leading to a quasi-periodic ordering of insulating and metallic nanodomains. Nanostructuring of strained VO$_2$ could potentially yield unique components for future devices. However, the most spectacular property of VO$_2$ - its ultrafast transition - has not yet been studied on the length scale of its phase heterogeneity. Here, we use ultrafast near-field microscopy in the mid-infrared to study individual, strained VO$_2$ nanobeams on the 10 nm scale. We reveal a previously unseen correlation between the local steady-state switching susceptibility and the local ultrafast response to below-threshold photoexcitation. These results suggest that it may be possible to tailor the local photo-response of VO$_2$ using strain and thereby realize new types of ultrafast nano-optical devices.
We use apertureless scattering near-field optical microscopy (SNOM) to investigate the nanoscale optical response of vanadium dioxide (VO2) thin films through a temperature-induced insulator-to-metal transition (IMT). We compare images of the transit
Pump-probe spectroscopy is central for exploring ultrafast dynamics of fundamental excitations, collective modes and energy transfer processes. Typically carried out using conventional diffraction-limited optics, pump-probe experiments inherently ave
Vanadium dioxide, an archetypal correlated-electron material, undergoes an insulator-metal transition near room temperature that exhibits electron-correlation-driven and structurally-driven physics. Using ultrafast optical spectroscopy and x-ray scat
We report a femtosecond mid-infrared study of the broadband low-energy response of individually separated (6,5) and (7,5) single-walled carbon nanotubes. Strong photoinduced absorption is observed around 200 meV, whose transition energy, oscillator s
The metal-insulator transition and unconventional metallic transport in vanadium dioxide (VO$_2$) are investigated with a combination of spectroscopic ellipsometry and reflectance measurements. The data indicates that electronic correlations, not ele