ﻻ يوجد ملخص باللغة العربية
The effects of Hubbard-type on-site interactions on the BHZ model is studied in this paper for model parameters appropriate for the HgTe/CdTe quantum well. Within a simple mean field theory we search for plausible magnetic instabilities in the model and find that the ground state becomes {em ferromagnetic} when the interaction strength between electrons in hole orbital is strong enough. The result can be understood by an approximate mapping of the Hubbard-BHZ model to the one band Hubbard model. The same mapping suggests that the magnetic and/or other ordered phases are more likely to occur in large gap topological insulators whose occupations are close to 1/2 for both electron and hole orbital.
Motivated by the discovery of the quantum anomalous Hall effect in Cr-doped ce{(Bi,Sb)2Te3} thin films, we study the generic states for magnetic topological insulators and explore the physical properties for both magnetism and itinerant electrons. Fi
A topological insulator doped with random magnetic impurities is studied. The system is modelled by the Kane-Mele model with a random spin exchange between conduction electrons and magnetic dopants. The dynamical mean field theory for disordered syst
The discovery of quadrupole topology opens a new horizon in the study of topological phenomena. However, the existing experimental realizations of quadrupole topological insulators in symmorphic lattices with $pi$-fluxes often break the protective mi
The recent discovery of magnetic topological insulators has opened new avenues to explore exotic states of matter that can emerge from the interplay between topological electronic states and magnetic degrees of freedom, be it ordered or strongly fluc
The construction and classification of crystalline symmetry protected topological (SPT) phases in interacting bosonic and fermionic systems have been intensively studied in the past few years. Crystalline SPT phases are not only of conceptual importa