ﻻ يوجد ملخص باللغة العربية
A natural image usually conveys rich semantic content and can be viewed from different angles. Existing image description methods are largely restricted by small sets of biased visual paragraph annotations, and fail to cover rich underlying semantics. In this paper, we investigate a semi-supervised paragraph generative framework that is able to synthesize diverse and semantically coherent paragraph descriptions by reasoning over local semantic regions and exploiting linguistic knowledge. The proposed Recurrent Topic-Transition Generative Adversarial Network (RTT-GAN) builds an adversarial framework between a structured paragraph generator and multi-level paragraph discriminators. The paragraph generator generates sentences recurrently by incorporating region-based visual and language attention mechanisms at each step. The quality of generated paragraph sentences is assessed by multi-level adversarial discriminators from two aspects, namely, plausibility at sentence level and topic-transition coherence at paragraph level. The joint adversarial training of RTT-GAN drives the model to generate realistic paragraphs with smooth logical transition between sentence topics. Extensive quantitative experiments on image and video paragraph datasets demonstrate the effectiveness of our RTT-GAN in both supervised and semi-supervised settings. Qualitative results on telling diverse stories for an image also verify the interpretability of RTT-GAN.
Generating paragraphs of diverse contents is important in many applications. Existing generation models produce similar contents from homogenized contexts due to the fixed left-to-right sentence order. Our idea is permuting the sentence orders to imp
We propose a hierarchically structured reinforcement learning approach to address the challenges of planning for generating coherent multi-sentence stories for the visual storytelling task. Within our framework, the task of generating a story given a
To simultaneously capture syntax and global semantics from a text corpus, we propose a new larger-context recurrent neural network (RNN) based language model, which extracts recurrent hierarchical semantic structure via a dynamic deep topic model to
Observing a set of images and their corresponding paragraph-captions, a challenging task is to learn how to produce a semantically coherent paragraph to describe the visual content of an image. Inspired by recent successes in integrating semantic top
We present BoTNet, a conceptually simple yet powerful backbone architecture that incorporates self-attention for multiple computer vision tasks including image classification, object detection and instance segmentation. By just replacing the spatial