ترغب بنشر مسار تعليمي؟ اضغط هنا

The Kepler-19 system: a thick-envelope super-Earth with two Neptune-mass companions characterized using Radial Velocities and Transit Timing Variations

67   0   0.0 ( 0 )
 نشر من قبل Luca Malavolta
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting planet with a period of 9.29 days, a radius of 2.2 R$_oplus$ and an upper limit on the mass of 20 M$_oplus$. The presence of a second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b, over 8 quarters of Kepler photometry, although neither mass nor period could be determined. By combining new TTVs measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N spectrograph, we measured through dynamical simulations a mass of $8.4 pm 1.6$ M$_oplus$ for Kepler-19b. From the same data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of $13.1 pm 2.7$ M$_oplus$ for Kepler-19c and discovered a Neptune-like planet with a mass of $20.3 pm 3.4$ M$_oplus$ on a 63 days orbit. By comparing dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between planets may lead to systematic errors that could hamper the precision in the orbital parameters when the dataset spans several years. With a density of $4.32 pm 0.87$ g cm$^{-3}$ ($0.78 pm 0.16$ $rho_oplus$) Kepler-19b belongs to the group of planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized by transit-time variations only and the increasing number of rocky planets with Earth-like density. Kepler-19 joins the small number of systems that reconcile transit timing variation and radial velocity measurements.

قيم البحث

اقرأ أيضاً

Transit timing variations of Kepler-410Ab were already reported in a few papers. Their semi-amplitude is about 14.5 minutes. In our previous paper, we found that the transit timing variations could be caused by the presence of a stellar companion in this system. Our main motivation for this paper was to investigate variation in a radial-velocity curve generated by this additional star in the system. We performed spectroscopic observation of Kepler-410 using three telescopes in Slovakia and Czech Republic. Using the cross-correlation function, we measured the radial velocities of the star Kepler-410A. We did not observe any periodic variation in a radial-velocity curve. Therefore, we rejected our previous hypothesis about additional stellar companion in the Kepler-410 system. We ran different numerical simulations to study mean-motion resonances with Kepler-410Ab. Observed transit timing variations could be also explained by the presence of a small planet near to mean-motion resonance 2:3 with Kepler-410Ab. This resonance is stable on a long-time scale. We also looked for stable regions in the Kepler-410 system where another planet could exist for a long time.
We present FIES@NOT, HARPS-N@TNG, and [email protected] radial velocity follow-up observations of K2-19, a compact planetary system hosting three planets, of which the two larger ones, namely K2-19b and K2-19c, are close to the 3:2 mean motion resonance . An analysis considering only the radial velocity measurements detects K2-19b, the largest and most massive planet in the system, with a mass of $54.8pm7.5$~M${_oplus}$ and provides a marginal detection of K2-19c, with a mass of M$_mathrm{c}$=$5.9^{+7.6}_{-4.3}$ M$_oplus$. We also used the TRADES code to simultaneously model both our RV measurements and the existing transit-timing measurements. We derived a mass of $54.4pm8.9$~M${_oplus}$ for K2-19b and of $7.5^{+3.0}_{-1.4}$~M${_oplus}$ for K2-19c. A prior K2-19b mass estimated by Barros et al. 2015, based principally on a photodynamical analysis of K2-19s light-curve, is consistent with both analysis, our combined TTV and RV analysis, and with our analysis based purely on RV measurements. Differences remain mainly in the errors of the more lightweight planet, driven likely by the limited precision of the RV measurements and possibly some yet unrecognized systematics.
We have carried out an extensive study of the possibility of the detection of Earth-mass and super-Earth Trojan planets using transit timing variation method with the Kepler space telescope. We have considered a system consisting of a transiting Jovi an-type planet in a short period orbit, and determined the induced variations in its transit timing due to an Earth-mass/super-Earth Trojan planet. We mapped a large section of the phase space around the 1:1 mean-motion resonance and identified regions corresponding to several other mean-motion resonances where the orbit of the planet would be stable. We calculated TTVs for different values of the mass and orbital elements of the transiting and perturbing bodies as well as the mass of central star, and identified orbital configurations of these objects (ranges of their orbital elements and masses) for which the resulted TTVs would be within the range of the variations of the transit timing of Keplers planetary candidates. Results of our study indicate that in general, the amplitudes of the TTVs fall within the detectable range of timing precision obtained from the Keplers long-cadence data, and depending on the parameters of the system, their magnitudes may become as large as a few hours. The probability of detection is higher for super-Earth Trojans with slightly eccentric orbits around short-period Jovian-type planets with masses slightly smaller than Jupiter. We present the details of our study and discuss the implications of its results.
K2-19 (EPIC201505350) is an interesting planetary system in which two transiting planets with radii ~ 7 $R_{Earth}$ (inner planet b) and ~ 4 $R_{Earth}$ (outer planet c) have orbits that are nearly in a 3:2 mean-motion resonance. Here, we present res ults of ground-based follow-up observations for the K2-19 planetary system. We have performed high-dispersion spectroscopy and high-contrast adaptive-optics imaging of the host star with the HDS and HiCIAO on the Subaru 8.2m telescope. We find that the host star is relatively old (>8 Gyr) late G-type star ($T_{eff}$ ~ 5350 K, $M_s$ ~ 0.9 $M_{Sun}$, and $R_{s}$ ~ 0.9 $R_{Sun}$). We do not find any contaminating faint objects near the host star which could be responsible for (or dilute) the transit signals. We have also conducted transit follow-up photometry for the inner planet with KeplerCam on the FLWO 1.2m telescope, TRAPPISTCAM on the TRAPPIST 0.6m telescope, and MuSCAT on the OAO 1.88m telescope. We confirm the presence of transit-timing variations, as previously reported by Armstrong and coworkers. We model the observed transit-timing variations of the inner planet using the synodic chopping formulae given by Deck & Agol (2015). We find two statistically indistinguishable solutions for which the period ratios ($P_{c}/P_{b}$) are located slightly above and below the exact 3:2 commensurability. Despite the degeneracy, we derive the orbital period of the inner planet $P_b$ ~ 7.921 days and the mass of the outer planet $M_c$ ~ 20 $M_{Earth}$. Additional transit photometry (especially for the outer planet) as well as precise radial-velocity measurements would be helpful to break the degeneracy and to determine the mass of the inner planet.
166 - Jason H. Steffen 2015
Motivated by recent discussions, both in private and in the literature, we use a Monte Carlo simulation of planetary systems to investigate sources of bias in determining the mass-radius distribution of exoplanets for the two primary techniques used to measure planetary masses---Radial Velocities (RVs) and Transit Timing Variations (TTVs). We assert that mass measurements derived from these two methods are comparably reliable---as the physics underlying their respective signals is well understood. Nevertheless, their sensitivity to planet mass varies with the properties of the planets themselves. We find that for a given planet size, the RV method tends to find planets with higher mass while the sensitivity of TTVs is more uniform. This ``sensitivity bias implies that a complete census of TTV systems is likely to yield a more robust estimate of the mass-radius distribution provided there are not important physical differences between planets near and far from mean-motion resonance. We discuss differences in the sensitivity of the two methods with orbital period and system architecture, which may compound the discrepancies between them (e.g., short period planets detectable by RVs may be more dense due to atmospheric loss). We advocate for continued mass measurements using both approaches as a means both to measure the masses of more planets and to identify potential differences in planet structure that may result from their dynamical and environmental histories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا