ﻻ يوجد ملخص باللغة العربية
Long wavelength spectral distortions in the Cosmic Microwave Background arising from the 21-cm transition in neutral Hydrogen are a key probe of Cosmic Dawn and the Epoch of Reionization. These features may reveal the nature of the first stars and ultra-faint galaxies that transformed the spin temperature and ionization state of the primordial gas. SARAS~2 is a spectral radiometer purposely designed for precision measurement of these monopole or all-sky global 21-cm spectral distortions. We use 63~hr night time observing of the radio background in the frequency band 110-200~MHz with the radiometer deployed at the Timbaktu Collective in Southern India to derive likelihoods for plausible redshifted 21-cm signals predicted by theoretical models. First light with SARAS 2 disfavors the class of models that feature weak X-ray heating (with $f_X leq 0.1$) and rapid reionization (with peak $frac{dT_b}{dz} geq 120~textrm{mK per unit redshift interval}$ ).
Spectral distortions in the cosmic microwave background over the 40--200~MHz band are imprinted by neutral hydrogen in the intergalactic medium prior to the end of reionization. This signal, produced in the redshift range $z = 6-34$ at the rest frame
Characterizing the epoch of reionization (EoR) at $zgtrsim 6$ via the redshifted 21 cm line of neutral Hydrogen (HI) is critical to modern astrophysics and cosmology, and thus a key science goal of many current and planned low-frequency radio telesco
We report upper-limits on the Epoch of Reionization (EoR) 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights of data ($sim36$ hours of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I data show evid
Ultraviolet emission from the first generation of stars in the Universe ionized the intergalactic medium in a process which was completed by z~6; the wavelength of these photons has been redshifted by (1+z) into the near infrared today and can be mea
The cosmic dark ages are the mysterious epoch during which the pristine gas began to condense and ultimately form the first stars. Although these beginnings have long been a topic of theoretical interest, technology has only recently allowed the begi