ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Light from the Epoch of Reionization with CIBER, the Cosmic Infrared Background Experiment

145   0   0.0 ( 0 )
 نشر من قبل Michael Zemcov
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultraviolet emission from the first generation of stars in the Universe ionized the intergalactic medium in a process which was completed by z~6; the wavelength of these photons has been redshifted by (1+z) into the near infrared today and can be measured using instruments situated above the Earths atmosphere. First flying in February 2009, the Cosmic Infrared Background Experiment (CIBER) comprises four instruments housed in a single reusable sounding rocket borne payload. CIBER will measure spatial anisotropies in the extragalactic IR background caused by cosmological structure from the epoch of reionization using two broadband imaging instruments, make a detailed characterization of the spectral shape of the IR background using a low resolution spectrometer, and measure the absolute brightness of the Zodical light foreground with a high resolution spectrometer in each of our six science fields. This paper presents the scientific motivation for CIBER and details of its first two flights, including a review of the published scientific results from the first flight and an outlook for future reionization science with CIBER data.



قيم البحث

اقرأ أيضاً

The Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I co nsists of a wide-field two-color camera for fluctuation measurements, a low-resolution absolute spectrometer for absolute EBL measurements, and a narrow-band imaging spectrometer to measure and correct scattered emission from the foreground zodiacal cloud. CIBER-I was successfully flown on February 25th, 2009 and has one more planned flight in early 2010. We propose, after several additional flights of CIBER-I, an improved CIBER-II camera consisting of a wide-field 30 cm imager operating in 4 bands between 0.5 and 2.1 microns. It is designed for a high significance detection of unresolved IR background fluctuations at the minimum level necessary for reionization. With a FOV 50 to 2000 times largerthan existing IR instruments on satellites, CIBER-II will carry out the definitive study to establish the surface density of sources responsible for reionization.
129 - K. Tsumura , T. Arai , J. Battle 2011
Absolute spectrophotometric measurements of diffuse radiation at 1 mu m to 2 mu m are crucial to our understanding of the radiative content of the Universe from nucleosynthesis since the epoch of reionization, the composition and structure of the Zod iacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment (CIBER) is a lambda / Delta lambda sim 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 mu m < lambda < 2.1 mu m. This paper presents the optical, mechanical and electronic design of the LRS, as well as the ground testing, characterization and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.
143 - M. Zemcov , T. Arai , J. Battle 2011
The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earths atmosphere. The instrument package comprises two imaging telescopes designed to character ize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the Zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBERs flight profile and configurations. CIBER is designed to be recoverable and has flown twice, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the second flight, and the scientific data from this flight are currently being analyzed.
We present near-infrared (0.8-1.8 $mu$m) spectra of 105 bright (${m_{J}}$ $<$ 10) stars observed with the low resolution spectrometer on the rocket-borne Cosmic Infrared Background Experiment (CIBER). As our observations are performed above the earth s atmosphere, our spectra are free from telluric contamination, which makes them a unique resource for near-infrared spectral calibration. Two-Micron All Sky Survey (2MASS) photometry information is used to identify cross-matched stars after reduction and extraction of the spectra. We identify the spectral types of the observed stars by comparing them with spectral templates from the Infrared Telescope Facility (IRTF) library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines.
Long wavelength spectral distortions in the Cosmic Microwave Background arising from the 21-cm transition in neutral Hydrogen are a key probe of Cosmic Dawn and the Epoch of Reionization. These features may reveal the nature of the first stars and ul tra-faint galaxies that transformed the spin temperature and ionization state of the primordial gas. SARAS~2 is a spectral radiometer purposely designed for precision measurement of these monopole or all-sky global 21-cm spectral distortions. We use 63~hr night time observing of the radio background in the frequency band 110-200~MHz with the radiometer deployed at the Timbaktu Collective in Southern India to derive likelihoods for plausible redshifted 21-cm signals predicted by theoretical models. First light with SARAS 2 disfavors the class of models that feature weak X-ray heating (with $f_X leq 0.1$) and rapid reionization (with peak $frac{dT_b}{dz} geq 120~textrm{mK per unit redshift interval}$ ).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا