ترغب بنشر مسار تعليمي؟ اضغط هنا

The Intrinsic $gamma$-ray Emissions of $Fermi$ Blazars

65   0   0.0 ( 0 )
 نشر من قبل Chao Lin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Beaming effect is important for the observational properties of blazars. In this work, we collect 91 $Fermi$ blazars with available radio Doppler factors. $gamma$-ray Doppler factors are estimated and compared with radio Doppler factors for some sources. The intrinsic (de-beamed) $gamma$-ray flux density ($f^{rm in}_{gamma}$), intrinsic $gamma$-ray luminosity ($L^{rm in}_{gamma}$), and intrinsic synchrotron peak frequency ($ u_{rm p}^{rm in}$) are calculated. Then we study the correlations between $f^{rm in}_{gamma}$ and redshift and find that they follow the theoretical relation: $log f = -2.0 log z + {rm const}$. When the subclasses are considered, we find that stationary jets are perhaps dominant in low synchrotron peaked blazars. 63 $Fermi$ blazars with both available short variability time scales ($Delta T$) and Doppler factors are also collected. We find that the intrinsic relationship between $L ^{rm in}_{gamma}$ and $Delta T^{rm in}$ obeys the Elliot & Shapiro and the Abramowicz & Nobili relations. Strong positive correlation between $f_{gamma}^{rm in}$ and $ u_{rm p}^{rm in}$ is found, suggesting that synchrotron emissions are highly correlated with $gamma$-ray emissions.

قيم البحث

اقرأ أيضاً

The curvature of the $gamma$-ray spectrum in blazars may reflect the intrinsic distribution of the emitting electron distribution, which will further give some information on the possible acceleration and cooling processes in the emitting region. The $gamma$-ray spectra of Fermi blazars are normally fitted either by a single power-law (PL) or a log-normal (call Logarithmic Parabola, LP) form. The possible reason for this differnece is not unclear. We statistically explore this issue based on the different observational properties of 1419 Fermi blazars in the 3LAC Clean sample. We find that the $gamma$-ray flux (100 MeV-100 GeV) and variability index follow bimodal distributions for PL and LP blazars, where $gamma$-ray flux and variability index show {a positive correlation}. However, the distributions of the $gamma$-ray luminosity and redshift follow a unimodal distribution. Our results suggest that the bimodal distribution of $gamma$-ray flux for LP and PL blazars may be not intrinsic and all blazars may have an intrinsic curved $gamma$-ray spectrum and the PL spectrum is just caused by the fitting effect due to the less photons.
Blazars are a subclass of active galactic nuclei (AGNs) with extreme observation properties, which is caused by the beaming effect, expressed by a Doppler factor, in a relativistic jet. Doppler factor is an important parameter in the blazars paradigm to indicate all of the observation properties, and many methods were proposed to estimate its value. In this paper, we present a method following Mattox et al. to calculate the lower limit on gamma-ray Doppler factor for 809 selected Fermi/LAT-detected gamma-ray blazars by adopting the available gamma-ray and X-ray data. Our sample included 342 flat-spectrum radio quasars (FSRQs) and 467 BL Lac objects (BL Lacs), out of which 507 sources are compiled with available radio core-dominance parameter (R) from our previous study. Our calculation shows that the average values of the lower limit on gamma-ray Doppler factor for FSRQs and BL Lacs are 6.87 and 4.31, respectively. We compare and discuss our results with those from the literature. We found that the derived lower limit on gamma-ray Doppler factor for some sources are higher than that from the radio estimation, which could be possibly explained by the jet bending within those blazars. Our results also suggest that the gamma-ray and radio regions perhaps share the same relativistic effects. The gamma-ray Doppler factor has been found to be correlated with both the gamma-ray luminosity and core-dominance parameter, implying that the jet is possibly continuous in the gamma-ray bands, and R is perhaps an indicator for a beaming effect.
We present the time variability properties of a sample of six blazars, AO 0235+164, 3C 273, 3C 279, PKS 1510-089, PKS 2155-304, and 3C 454.3, at optical-IR as well as gamma-ray energies. These observations were carried out as a part of the Yale/SMART S program during 2008-2010 that has followed the variations in emission of the bright Fermi-LAT-monitored blazars in the southern sky with closely-spaced observations at BVRJK bands. We find the optical/IR time variability properties of these blazars to be remarkably similar to those at the gamma-ray energies. The power spectral density (PSD) functions of the R-band variability of all six blazars are fit well by simple power-law functions with negative slope such that there is higher amplitude variability on longer timescales. No clear break is identified in the PSD of any of the sources. The average slope of the PSD of R-band variability of these blazars is similar to what was found by the Fermi team for the gamma-ray variability of a larger sample of bright blazars. This is consistent with leptonic models where the optical-IR and gamma-ray emission is generated by the same population of electrons through synchrotron and inverse-Compton processes, respectively. The prominent flares present in the optical-IR as well as the gamma-ray light curves of these blazars are predominantly symmetric, i.e., have similar rise and decay timescales, indicating that the long-term variability is dominated by the crossing time of radiation or a disturbance through the emission region rather than by the acceleration or energy-loss timescales of the radiating electrons. In the blazar 3C 454.3, which has the highest-quality light curves, the location of a large gamma-ray outburst during 2009 December is consistent with being in the jet at ~18 pc from the central engine. This poses strong constraints on the models of high energy emission in the jets of blazars.
Blazars are an extreme subclass of active galactic nuclei. Their rapid variability, luminous brightness, superluminal motion, and high and variable polarization are probably due to a beaming effect. However, this beaming factor (or Doppler factor) is very difficult to measure. Currently, a good way to estimate it is to use the time scale of their radio flares. In this $Letter$, we use multiwavelength data and Doppler factors reported in the literatures for a sample of 86 flaring blazars detected by Fermi to compute their intrinsic multiwavelength data and intrinsic spectral energy distributions, and investigate the correlations among observed and intrinsic data. Quite interestingly, intrinsic data show a positive correlation between luminosity and peak frequency, in contrast with the behavior of observed data, and a tighter correlation between $gamma$-ray luminosity and the lower energy ones. For flaring blazars detected by Fermi, we conclude that (1) Observed emissions are strongly beamed; (2) The anti-correlation between luminosity and peak frequency from the observed data is an apparent result, the correlation between intrinsic data being positive; and (3) Intrinsic $gamma$-ray luminosity is strongly correlated with other intrinsic luminosities.
The detection of periodicities in light curves of active galacticnuclei (AGN) could have profound consequences for our understanding of the nature and radiation physics of these objects. At high energies (HE; E>100 MeV) 5 blazars (PG 1553+113,PKS 215 5-304, 0426-380, 0537-441, 0301-243) have been reported to show year-like quasi-periodic variations (QPVs) with significance >3 sig. As these findings are based on few cycles only, care needs to be taken to properly account for random variations which can produce intervals of seemingly periodic behaviour. We present results of an updated timing analysis for 6 blazars (adding PKS 0447-439), utilizing suitable methods to evaluate their long term variability properties and to search for QPVs in their light curves. We generate gamma-ray light curves covering almost 10 years, study their timing properties and search for QPVs using the Lomb-Scargle Periodogram and the Wavelet Z-transform. Extended Monte Carlo simulations are used to evaluate the statistical significance. Comparing their probability density functions (PDFs), all sources (except PG 1553+113) exhibit a clear deviation from a Gaussian distribution, but are consistent with being log-normal, suggesting that the underlying variability is of a non-linear, multiplicative nature. Apart from PKS 0301-243 the power spectral density for all investigated blazars is close to flicker noise (PL slope -1). Possible QPVs with a local significance ~ 3 sig. are found in all light curves (apart from PKS 0426-380 and 0537-441), with observed periods between (1.7-2.8) yr. The evidence is strongly reduced, however, if evaluated in terms of a global significance. Our results advise caution as to the significance of reported year-like HE QPVs in blazars. Somewhat surprisingly, the putative, redshift-corrected periods are all clustering around 1.6 yr. We speculate on possible implications for QPV generation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا