ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Dielectric Stoichiometry on the Photoluminescence Properties of Encapsulated WSe2 Monolayers

158   0   0.0 ( 0 )
 نشر من قبل Javier Mart\\'in-S\\'anchez
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional transition-metal-dichalcogenide semiconductors have emerged as promising candidates for optoelectronic devices with unprecedented properties and ultra-compact performances. However atomically thin materials are highly sensitive to surrounding dielectric media, which imposes severe limitations to their practical applicability. Hence for their suitable integration into devices, the development of reliable encapsulation procedures that preserve their physical properties are required. Here, the excitonic photoluminescence of WSe2 monolayer flakes is assessed, at room temperature and 10 K, on mechanically exfoliated flakes encapsulated with SiOx and AlxOy layers employing chemical and physical deposition techniques. Conformal flakes coating on untreated - non-functionalized - flakes is successfully demonstrated by all the techniques except for atomic layer deposition, where a cluster-like oxide coating is observed. No significant compositional or strain state changes in the flakes are detected upon encapsulation by any of the techniques. Remarkably, our results evidence that the flakes optical emission is strongly influenced by the quality of the encapsulating oxide - stoichiometry -. When the encapsulation is carried out with slightly sub-stoichiometric oxides two remarkable phenomena are observed. First, there is a clear electrical doping of the monolayers that is revealed through a dominant trion - charged exciton - room-temperature photoluminescence. Second, a strong decrease of the monolayers optical emission is measured attributed to non-radiative recombination processes and/or carriers transfer from the flake to the oxide. Power- and temperature-dependent photoluminescence measurements further confirm that stoichiometric oxides obtained by physical deposition lead to a successful encapsulation.

قيم البحث

اقرأ أيضاً

The optical properties of two-dimensional transition metal dichalcogenide monolayers such as MoS$_2$ or WSe$_2$ are dominated by excitons, Coulomb bound electron-hole pairs. Screening effects due the presence of hexagonal-BN surrounding layers have b een investigated by solving the Bethe Salpeter Equation on top of GW wave functions in density functional theory calculations. We have calculated the dependence of both the quasi-particle gap and the binding energy of the neutral exciton ground state E$_b$ as a function of the hBN layer thickness. This study demonstrates that the effects of screening at this level of theory are more short-ranged that it is widely believed. The encapsulation of a WSe$_2$ monolayer by three sheets of hBN (around 1 nm) already yields a 20 % decrease of E$_b$ whereas the maximal reduction is 27% for thick hBN. We have performed similar calculations in the case of a WSe$_2$ monolayer deposited on stacked hBN layers. These results are compared to the recently proposed Quantum Electrostatic Heterostructure approach.
We experimentally demonstrate hot exciton transport in h-BN encapsulated WSe2 monolayers via spatially and temporally resolved photoluminescence measurements at room temperature. We show that the nonlinear evolution of the mean squared displacement o f the non-resonantly excited hot exciton gas is primarily due to the relaxation of its excess kinetic energy and is characterized by a density-dependent fast expansion that converges to a slower, constant rate expansion. We also observe saturation of the hot exciton gas expansion rate at high excitation densities due to the balance between Auger-assisted hot exciton generation and the phonon-assisted hot exciton relaxation processes.
The appearance of single photon sources in atomically thin semiconductors holds great promises for the development of a flexible and ultra-compact quantum technology, in which elastic strain engineering can be used to tailor their emission properties . Here, we show a compact and hybrid 2D-semiconductor-piezoelectric device that allows for controlling the energy of single photons emitted by quantum emitters localized in wrinkled WSe2 monolayers. We demonstrate that strain fields exerted by the piezoelectric device can be used to tune the energy of localized excitons in WSe2 up to 18 meV in a reversible manner, while leaving the single photon purity unaffected over a wide range. Interestingly, we find that the magnitude and in particular the sign of the energy shift as a function of stress is emitter dependent. With the help of finite element simulations we suggest a simple model that explains our experimental observations and, furthermore, discloses that the type of strain (tensile or compressive) experienced by the quantum emitters strongly depends on their localization across the wrinkles. Our findings are of strong relevance for the practical implementation of single photon devices based on two-dimensional materials as well as for understanding the effects of strain on their emission properties.
Energy relaxation of photo-excited charge carriers is of significant fundamental interest and crucial for the performance of monolayer (1L) transition metal dichaclogenides (TMDs) in optoelectronics. We measure light scattering and emission in 1L-WSe $_2$ close to the laser excitation energy (down to~$sim$0.6meV). We detect a series of periodic maxima in the hot photoluminescence intensity, stemming from energy states higher than the A-exciton state, in addition to sharp, non-periodic Raman lines related to the phonon modes. We find a period $sim$15meV for peaks both below (Stokes) and above (anti-Stokes) the laser excitation energy. We detect 7 maxima from 78K to room temperature in the Stokes signal and 5 in the anti-Stokes, of increasing intensity with temperature. We assign these to phonon cascades, whereby carriers undergo phonon-induced transitions between real states in the free-carrier gap with a probability of radiative recombination at each step. We infer that intermediate states in the conduction band at the $Lambda$-valley of the Brillouin zone participate in the cascade process of 1L-WSe$_2$. The observations explain the primary stages of carrier relaxation, not accessible so far in time-resolved experiments. This is important for optoelectronic applications, such as photodetectors and lasers, because these determine the recovery rate and, as a consequence, the devices speed and efficiency.
Monolayers of transition metal dichalcogenides are ideal materials to control both spin and valley degrees of freedom either electrically or optically. Nevertheless, optical excitation mostly generates excitons species with inherently short lifetime and spin/valley relaxation time. Here we demonstrate a very efficient spin/valley optical pumping of resident electrons in n-doped WSe2 and WS2 monolayers. We observe that, using a continuous wave laser and appropriate doping and excitation densities, negative trion doublet lines exhibit circular polarization of opposite sign and the photoluminescence intensity of the triplet trion is more than four times larger with circular excitation than with linear excitation. We interpret our results as a consequence of a large dynamic polarization of resident electrons using circular light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا