ﻻ يوجد ملخص باللغة العربية
An edge-ordered graph is a graph with a total ordering of its edges. A path $P=v_1v_2ldots v_k$ in an edge-ordered graph is called increasing if $(v_iv_{i+1}) > (v_{i+1}v_{i+2})$ for all $i = 1,ldots,k-2$; it is called decreasing if $(v_iv_{i+1}) < (v_{i+1}v_{i+2})$ for all $i = 1,ldots,k-2$. We say that $P$ is monotone if it is increasing or decreasing. A rooted tree $T$ in an edge-ordered graph is called monotone if either every path from the root of to a leaf is increasing or every path from the root to a leaf is decreasing. Let $G$ be a graph. In a straight-line drawing $D$ of $G$, its vertices are drawn as different points in the plane and its edges are straight line segments. Let $overline{alpha}(G)$ be the maximum integer such that every edge-ordered straight-line drawing of $G$ %under any edge labeling contains a monotone non-crossing path of length $overline{alpha}(G)$. Let $overline{tau}(G)$ be the maximum integer such that every edge-ordered straight-line drawing of $G$ %under any edge labeling contains a monotone non-crossing complete binary tree of size $overline{tau}(G)$. In this paper we show that $overline alpha(K_n) = Omega(loglog n)$, $overline alpha(K_n) = O(log n)$, $overline tau(K_n) = Omega(loglog log n)$ and $overline tau(K_n) = O(sqrt{n log n})$.
An edge-ordering of a graph $G=(V,E)$ is a bijection $phi:Eto{1,2,...,|E|}$. Given an edge-ordering, a sequence of edges $P=e_1,e_2,...,e_k$ is an increasing path if it is a path in $G$ which satisfies $phi(e_i)<phi(e_j)$ for all $i<j$. For a graph $
In this paper, the problem of pattern avoidance in generalized non-crossing trees is studied. The generating functions for generalized non-crossing trees avoiding patterns of length one and two are obtained. Lagrange inversion formula is used to obta
We obtain sufficient conditions for the emergence of spanning and almost-spanning bounded-degree {sl rainbow} trees in various host graphs, having their edges coloured independently and uniformly at random, using a predetermined palette. Our first re
Let $G$ be a graph of order $n$ with an edge-coloring $c$, and let $delta^c(G)$ denote the minimum color-degree of $G$. A subgraph $F$ of $G$ is called rainbow if any two edges of $F$ have distinct colors. There have been a lot results in the existin
We investigate the number of 4-edge paths in graphs with a fixed number of vertices and edges. An asymptotically sharp upper bound is given to this quantity. The extremal construction is the quasi-star or the quasi-clique graph, depending on the edge