ﻻ يوجد ملخص باللغة العربية
We investigate the number of 4-edge paths in graphs with a fixed number of vertices and edges. An asymptotically sharp upper bound is given to this quantity. The extremal construction is the quasi-star or the quasi-clique graph, depending on the edge density. An easy lower bound is also proved. This answer resembles the classic theorem of Ahlswede and Katona about the maximal number of 2-edge paths, and a recent theorem of Kenyon, Radin, Ren and Sadun about k-edge stars.
An edge-ordering of a graph $G=(V,E)$ is a bijection $phi:Eto{1,2,...,|E|}$. Given an edge-ordering, a sequence of edges $P=e_1,e_2,...,e_k$ is an increasing path if it is a path in $G$ which satisfies $phi(e_i)<phi(e_j)$ for all $i<j$. For a graph $
Kostochka and Yancey resolved a famous conjecture of Ore on the asymptotic density of $k$-critical graphs by proving that every $k$-critical graph $G$ satisfies $|E(G)| geq (frac{k}{2} - frac{1}{k-1})|V(G)| - frac{k(k-3)}{2(k-1)}$. The class of graph
A strong edge-coloring of a graph $G$ is an edge-coloring such that any two edges on a path of length three receive distinct colors. We denote the strong chromatic index by $chi_{s}(G)$ which is the minimum number of colors that allow a strong edge-c
A graph is edge-primitive if its automorphism group acts primitively on the edge set, and 2-arc-transitive if its automorphism group acts transitively on the set of 2-arcs. In this paper, we present a classification for those edge-primitive graphs wh
A graph $G(V,E)$ of order $|V|=p$ and size $|E|=q$ is called super edge-graceful if there is a bijection $f$ from $E$ to ${0,pm 1,pm 2,...,pm frac{q-1}{2}}$ when $q$ is odd and from $E$ to ${pm 1,pm 2,...,pm frac{q}{2}}$ when $q$ is even such that th