ﻻ يوجد ملخص باللغة العربية
The hard X-ray source IGR J11215-5952 is a peculiar transient, displaying very short X-ray outbursts every 165 days. We obtained high-resolution spectra of the optical counterpart, HD 306414, at different epochs, spanning a total of three months, before and around the 2007 February outburst with the combined aims of deriving its astrophysical parameters and searching for orbital modulation. We fit model atmospheres generated with the fastwind code to the spectrum. We also cross-correlated each individual spectrum to the best-fit model to derive radial velocities. From its spectral features, we classify HD 306414 as B0.5 Ia. From the model fit, we find Teff = 24 700 K and log g = 2.7, in good agreement with the morphological classification. Using the interstellar lines in its spectrum, we estimate a distance to HD 306414 d > 7 kpc. Assuming this distance, we derive R* = 40 Rsol and Mspect = 30 Msol (consistent, within errors, with Mevol = 38 Msol). Radial velocity changes are not dominated by the orbital motion, and we find an upper limit on the semi-amplitude for the optical component Kopt < 11 +- 6 km/s. Large variations in the depth and shape of photospheric lines suggest the presence of strong pulsations, which may be the main cause of the radial velocity changes. Very significant variations, uncorrelated with those of the photospheric lines are seen in the shape and position of the Halpha emission feature around the time of the X-ray outburst, but large excursions are also observed at other times. HD 306414 is a normal B0.5 Ia supergiant. Its radial velocity curve is dominated by an effect that is different from binary motion, and is most likely stellar pulsations. The data available suggest that the X-ray outbursts are caused by the close passage of the neutron star in a very eccentric orbit, perhaps leading to localised mass outflow. (abridged).
We report on the results of a NuSTAR observation of the Supergiant Fast X-ray Transient pulsar IGRJ11215-5952 during the peak of its outburst in June 2017. IGRJ11215-5952 is the only SFXT undergoing strictly periodic outbursts, every 165 days. NuSTAR
IGR J11215-5952 is a hard X-ray transient discovered in 2005 April by INTEGRAL and a member of the new class of HMXB, the Supergiant Fast X-ray Transients (SFXTs). While INTEGRAL and RXTE observations have shown that the outbursts occur with a period
We report the results of an XMM-Newton and NuSTAR coordinated observation of the Supergiant Fast X-ray Transient (SFXT) IGRJ11215-5952, performed on February 14, 2016, during the expected peak of its brief outburst, which repeats every about 165 days
IGR J11215-5952 is a hard X-ray transient source discovered in April 2005 with INTEGRAL and a confirmed member of the new class of High Mass X-ray Binaries, the Supergiant Fast X-ray Transients (SFXTs). Archival INTEGRAL data and RXTE observations sh
The new transient IGR 16358-4726 was discovered on 2003 March 19 with INTEGRAL. We detected the source serendipitously during our 2003 March 24 observation of SGR 1627-41 with the Chandra X-ray Observatory at the 1.7 x 10^{-10} ergs s^{-1} cm^{-2} fl