ﻻ يوجد ملخص باللغة العربية
We report observations of magnetoresistance, quantum oscillations and angle-resolved photoemission in RhSb$_3$, a unfilled skutterudite semimetal with low carrier density. The calculated electronic band structure of RhSb$_3$ entails a $Z_2$ quantum number $ u_0=0, u_1= u_2= u_3=1$ in analogy to strong topological insulators, and inverted linear valence/conduction bands that touch at discrete points close to the Fermi level, in agreement with angle-resolved photoemission results. Transport experiments reveal an unsaturated linear magnetoresistance that approaches a factor of 200 at 60 T magnetic fields, and quantum oscillations observable up to 150~K that are consistent with a large Fermi velocity ($sim 1.3times 10^6$ ms$^{-1}$), high carrier mobility ($sim 14$ $m^2$/Vs), and small three dimensional hole pockets with nontrivial Berry phase. A very small, sample-dependent effective mass that falls as low as $0.015(7)$ bare masses scales with Fermi velocity, suggesting RhSb$_3$ is a new class of zero-gap three-dimensional Dirac semimetal.
Three-dimensional (3D) topological Dirac semimetals (TDSs) represent a novel state of quantum matter that can be viewed as 3D graphene. In contrast to two-dimensional (2D) Dirac fermions in graphene or on the surface of 3D topological insulators, TDS
Harmonic generation is a general characteristic of driven nonlinear systems, and serves as an efficient tool for investigating the fundamental principles that govern the ultrafast nonlinear dynamics. In atomic gases, high-harmonic radiation is produc
Three-dimensional (3D) topological Dirac semimetal, when thinned down to 2D few layers, is expected to possess gapped Dirac nodes via quantum confinement effect and concomitantly display the intriguing quantum spin Hall (QSH) insulator phase. However
We report the observation of Shubnikov-de Haas oscillations in bulk single crystals of monoclinic SrIrO$_3$ in magnetic fields up to 35 T. Analysis of the oscillations reveals a Fermi surface comprising multiple small pockets with effective masses up
The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals ho