ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical points in two-channel quantum systems

342   0   0.0 ( 0 )
 نشر من قبل Ingrid Rotter
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Calculations for open quantum systems are performed usually by taking into account their embedding into one common environment, which is mostly the common continuum of scattering wavefunctions. Realistic quantum systems are coupled however often to more than one continuum. For example, the conductance of an open cavity needs at least two environments, namely the input and the output channel. In the present paper, we study generic features of the transfer of particles through an open quantum system coupled to two channels. We compare the results with those characteristic of a one-channel system. Of special interest is the parameter range which is influenced by singular points. Here, the states of the system are mixed via the environment. In the one-channel case, the resonance structure of the cross section is independent of the existence of singular points. In the two-channel case, however, new effects appear caused by coherence. An example is the enhanced conductance of an open cavity in a certain finite parameter range. It is anti-correlated with the phase rigidity of the eigenfunctions of the non-Hermitian Hamilton operator.



قيم البحث

اقرأ أيضاً

69 - Eric R. Anschuetz 2021
One of the most important properties of classical neural networks is the clustering of local minima of the network near the global minimum, enabling efficient training. This has been observed not only numerically, but also has begun to be analyticall y understood through the lens of random matrix theory. Inspired by these results in classical machine learning, we show that a certain randomized class of variational quantum algorithms can be mapped to Wishart random fields on the hypertorus. Then, using the statistical properties of such random processes, we analytically find the expected distribution of critical points. Unlike the case for deep neural networks, we show the existence of a transition in the quality of local minima at a number of parameters exponentially large in the problem size. Below this transition, all local minima are concentrated far from the global minimum; above, all local minima are concentrated near the global minimum. This is consistent with previously observed numerical results on the landscape behavior of Hamiltonian agnostic variational quantum algorithms. We give a heuristic explanation as to why ansatzes that depend on the problem Hamiltonian might not suffer from these scaling issues. We also verify that our analytic results hold experimentally even at modest system sizes.
146 - L. Schweitzer , P. Markos 2012
We study the localization properties of electrons moving on two-dimensional bi-partite lattices in the presence of disorder. The models investigated exhibit a chiral symmetry and belong to the chiral orthogonal (chO), chiral symplectic (chS) or chira l unitary (chU) symmetry class. The disorder is introduced via real random hopping terms for chO and chS, while complex random phases generate the disorder in the chiral unitary model. In the latter case an additional spatially constant, perpendicular magnetic field is also applied. Using a transfer-matrix-method, we numerically calculate the smallest Lyapunov exponents that are related to the localization length of the electronic eigenstates. From a finite-size scaling analysis, the logarithmic divergence of the localization length at the quantum critical point at E=0 is obtained. We always find for the critical exponent kappa, which governs the energy dependence of the divergence, a value close to 2/3. This result differs from the exponent kappa=1/2 found previously for a chiral unitary model in the absence of a constant magnetic field. We argue that a strong constant magnetic field changes the exponent kappa within the chiral unitary symmetry class by effectively restoring particle-hole symmetry even though a magnetic field induced transition from the ballistic to the diffusive regime cannot be fully excluded.
The most basic local conversion is local operations and classical communications (LOCC), which is also the most natural restriction in quantum information processing. We investigate the
Quantum phase transitions occur when the ground state of a quantum system undergoes a qualitative change when an external control parameter reaches a critical value. Here, we demonstrate a technique for studying quantum systems undergoing a phase tra nsition by coupling the system to a probe qubit. It uses directly the increased sensibility of the quantum system to perturbations when it is close to a critical point. Using an NMR quantum simulator, we demonstrate this measurement technique for two different types of quantum phase transitions in an Ising spin chain.
The Lipkin-Meshkov-Glick (LMG) model describes critical systems with interaction beyond the first-neighbor approximation. Here we address the characterization of LMG systems, i.e. the estimation of anisotropy, and show how criticality may be exploite d to improve precision. In particular, we provide exact results for the Quantum Fisher Information of small-size LMG chains made of $N=2, 3$ and $4$ lattice sites and analyze the same quantity in the thermodynamical limit by means of a zero-th order approximation of the system Hamiltonian. We then show that the ultimate bounds to precision may be achieved by tuning the external field and by measuring the total magnetization of the system. We also address the use of LMG systems as quantum thermometers and show that: i) precision is governed by the gap between the lowest energy levels of the systems, ii) field-dependent level crossing provides a resource to extend the operating range of the quantum thermometer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا