ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-broadband On-chip Twisted Light Emitter

171   0   0.0 ( 0 )
 نشر من قبل Zhenweu Xie
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On-chip twisted light emitters are essential components for orbital angular momentum (OAM) communication devices, which could address the growing demand for high-capacity communication systems by providing an additional degree of freedom for wavelength/frequency division multiplexing (WDM/FDM). Although whispering gallery mode enabled OAM emitters have been shown to possess some advantages, such as being compact and phase accurate, their inherent narrow bandwidth prevents them from being compatible with WDM/FDM techniques. Here, we demonstrate an ultra-broadband multiplexed OAM emitter that utilizes a novel joint path-resonance phase control concept. The emitter has a micron sized radius and nanometer sized features. Coaxial OAM beams are emitted across the entire telecommunication band from 1450 to 1650 nm. We applied the emitter for OAM communication with a data rate of 1.2 Tbit/s assisted by 30-channel optical frequency combs (OFC). The emitter provides a new solution to further increase of the capacity in the OFC communication scenario.

قيم البحث

اقرأ أيضاً

Nanophotonic entangled-photon sources are a critical building block of chip-scale quantum photonic architecture and have seen significant development over the past two decades. These sources generate photon pairs that typically span over a narrow fre quency bandwidth. Generating entanglement over a wide spectral region has proven to be useful in a wide variety of applications including quantum metrology, spectroscopy and sensing, and optical communication. However, generation of broadband photon pairs with temporal coherence approaching an optical cycle on a chip is yet to be seen. Here we demonstrate generation of ultra-broadband entangled photons using spontaneous parametric down-conversion in a periodically-poled lithium niobate nanophotonic waveguide. We employ dispersion engineering to achieve a bandwidth of 100 THz (1.2 - 2 $mu$m), at a high efficiency of 13 GHz/mW. The photons show strong temporal correlations and purity with the coincidence-to-accidental ratio exceeding $10^5$ and $>$ 98% two-photon interference visibility. These properties together with the piezo-electric and electro-optic control and reconfigurability, make thin-film lithium niobate an excellent platform for a controllable entanglement source for quantum communication and computing, and open a path towards femtosecond metrology and spectroscopy with non-classical light on a nanophotonic chip.
We integrate about 100 single Cadmium Selenide semiconductor nanowires in self-standing Silicon Nitride photonic crystal cavities in a single processing run. Room temperature measurements reveal a single narrow emission linewidth, corresponding to a Q-factor as large as 5000. By varying the structural parameters of the photonic crystal, the peak wavelength is tuned, thereby covering the entire emission spectral range of the active material. A very large spectral range could be covered by heterogeneous integration of different active materials.
We present an ultra broadband thin-film infrared absorber made of saw-toothed anisotropic metamaterial. Absorbtivity of higher than 95% at normal incidence is supported in a wide range of frequencies, where the full absorption width at half maximum i s about 86%. Such property is retained well at a very wide range of incident angles too. Light of shorter wavelengths are harvested at upper parts of the sawteeth of smaller widths, while light of longer wavelengths are trapped at lower parts of larger tooth widths. This phenomenon is explained by the slowlight modes in anisotropic metamaterial waveguide. Our study can be applied in the field of designing photovoltaic devices and thermal emitters.
As an analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has been realized both in plasmonic metamaterial and waveguide structures. Via near-field coupling within unit cells, PIT with broadband could be pro duced by plasmonic metamaterials, which, however, has not been realized in on-chip plasmonic waveguide structures. Here, we introduce broadband PIT based on a plasmonic metal-insulator-metal (MIM) waveguide system. Utilizing the direct coupling structure, PIT emerges based on an easy-fabricated structure without gap. By tuning coupling distance, the transparent window can be continuously tuned from narrow- to broadband. Such device is promising for on-chip applications on sensing, filtering and slow light over a broad frequency range.
A microwave ultra-broadband polarization-independent metamaterial absorber is demonstrated. It is composed of a periodic array of metal-dielectric multilayered quadrangular frustum pyramids. These pyramids possess resonant absorption modes at multi-f requencies, of which the overlapping leads to the total absorption of the incident wave over an ultra-wide spectral band. The experimental absorption at normal incidence is above 90% in the frequency range of 7.8-14.7GHz, and the absorption is kept large when the incident angle is smaller than 60 degrees. The experimental results agree well with the numerical simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا