ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical-disorder-caused Medium Range Order in Covalent Glass

62   0   0.0 ( 0 )
 نشر من قبل Xianqiang Liu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

How atoms in covalent solids rearrange over a medium-range length-scale during amorphization is a long pursued question whose answer could profoundly shape our understanding on amorphous (a-) networks. Based on ab-intio calculations and reverse Monte Carlo simulations of experiments, we surprisingly find that even though the severe chemical disorder in a-GeTe undermined the prevailing medium range order (MRO) picture, it is responsible for the experimentally observed MRO. That this thing could happen depends on a novel atomic packing scheme. And this scheme results in a kind of homopolar bond chain-like polyhedral clusters. Within this scheme, the formation of homopolar bonds can be well explained by an electron-counting model and further validated by quantitative bond energy analysis based. Our study suggests that the underlying physics for chemical disorder in a-GeTe is intrinsic and universal to all severely chemically disordered covalent glasses.

قيم البحث

اقرأ أيضاً

The standard two-dimensional Ising spin glass does not exhibit an ordered phase at finite temperature. Here, we investigate whether long-range correlated bonds change this behavior. The bonds are drawn from a Gaussian distribution with a two-point co rrelation for bonds at distance r that decays as $(1+r^2)^{-a/2}$, $a>0$. We study numerically with exact algorithms the ground state and domain wall excitations. Our results indicate that the inclusion of bond correlations does not lead to a spin-glass order at any finite temperature. A further analysis reveals that bond correlations have a strong effect at local length scales, inducing ferro/antiferromagnetic domains into the system. The length scale of ferro/antiferromagnetic order diverges exponentially as the correlation exponent approaches a critical value, $a to a_c = 0$. Thus, our results suggest that the system becomes a ferro/antiferromagnet only in the limit $a to 0$.
We introduce the use of neural networks as classifiers on classical disordered systems with no spatial ordering. In this study, we implement a convolutional neural network trained to identify the spin-glass state in the three-dimensional Edwards-Ande rson Ising spin-glass model from an input of Monte Carlo sampled configurations at a given temperature. The neural network is designed to be flexible with the input size and can accurately perform inference over a small sample of the instances in the test set. Using the neural network to classify instances of the three-dimensional Edwards-Anderson Ising spin-glass in a (random) field we show that the inferred phase boundary is consistent with the absence of an Almeida-Thouless line.
We propose a method to study the magnetic properties of a disordered Ising kagome lattice. The model considers small spin clusters with infinite-range disordered couplings and short-range ferromagnetic (FE) or antiferromagnetic interactions. The corr elated cluster mean-field theory is used to obtain an effective single-cluster problem. A finite disorder intensity in FE kagome lattice introduces a cluster spin-glass (CSG) phase. Nevertheless, an infinitesimal disorder stabilizes the CSG behavior in the geometrically frustrated kagome system. Entropy, magnetic susceptibility and spin-spin correlation are used to describe the interplay between disorder and geometric frustration (GF). We find that GF plays an important role in the low-disorder CSG phase. However, the increase of disorder can rule out the effect of GF.
The ferromagnetic phase of an Ising model in d=3, with any amount of quenched antiferromagnetic bond randomness, is shown to undergo a transition to a spin-glass phase under sufficient quenched bond dilution. This general result, demonstrated here wi th the numerically exact renormalization-group solution of a d=3 hierarchical lattice, is expected to hold true generally, for the cubic lattice and for quenched site dilution. Conversely, in the ferromagnetic-spinglass-antiferromagnetic phase diagram, the spin-glass phase expands under quenched dilution at the expense of the ferromagnetic and antiferromagnetic phases. In the ferro-spinglass phase transition induced by quenched dilution reentrance is seen, as previously found for the ferro-spinglass transition induced by increasing the antiferromagnetic bond concentration.
230 - S. Albert , Th. Bauer , M. Michl 2016
Glasses are ubiquitous in daily life and technology. However the microscopic mechanisms generating this state of matter remain subject to debate: Glasses are considered either as merely hyper-viscous liquids or as resulting from a genuine thermodynam ic phase transition towards a rigid state. We show that third- and fifth-order susceptibilities provide a definite answer to this longstanding controversy. Performing the corresponding high-precision nonlinear dielectric experiments for supercooled glycerol and propylene carbonate, we find strong support for theories based upon thermodynamic amorphous order. Moreover, when lowering temperature, we find that the growing transient domains are compact - that is their fractal dimension d_f = 3. The glass transition may thus represent a class of critical phenomena different from canonical second-order phase transitions for which d_f < 3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا