ﻻ يوجد ملخص باللغة العربية
The ferromagnetic phase of an Ising model in d=3, with any amount of quenched antiferromagnetic bond randomness, is shown to undergo a transition to a spin-glass phase under sufficient quenched bond dilution. This general result, demonstrated here with the numerically exact renormalization-group solution of a d=3 hierarchical lattice, is expected to hold true generally, for the cubic lattice and for quenched site dilution. Conversely, in the ferromagnetic-spinglass-antiferromagnetic phase diagram, the spin-glass phase expands under quenched dilution at the expense of the ferromagnetic and antiferromagnetic phases. In the ferro-spinglass phase transition induced by quenched dilution reentrance is seen, as previously found for the ferro-spinglass transition induced by increasing the antiferromagnetic bond concentration.
We show theoretically that spin and orbital degrees of freedom in the pyrochlore oxide Y2Mo2O7, which is free of quenched disorder, can exhibit a simultaneous glass transition, working as dynamical randomness to each other. The interplay of spins and
The spin-1/2 quantum Heisenberg model is studied in all spatial dimensions d by renormalization-group theory. Strongly asymmetric phase diagrams in temperature and antiferromagnetic bond probability p are obtained in dimensions d geq 3. The asymmetry
A novel order parameter $Phi$ for spin glasses is defined based on topological criteria and with a clear physical interpretation. $Phi$ is first investigated for well known magnetic systems and then applied to the Edwards-Anderson $pm J$ model on a s
It is well-known that spontaneous symmetry breaking in one spatial dimension is thermodynamically forbidden at finite energy density. Here we show that mirror-symmetric disorder in an interacting quantum system can invert this paradigm, yielding spon
Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by appl