ﻻ يوجد ملخص باللغة العربية
We develop a theory of weakly interacting fermionic atoms in shaken optical lattices based on the orbital mixing in the presence of time-periodic modulations. Specifically, we focus on fermionic atoms in circularly shaken square lattice with near resonance frequencies, i.e., tuned close to the energy separation between $s$-band and the $p$-bands. First, we derive a time-independent four-band effective Hamiltonian in the non-interacting limit. Diagonalization of the effective Hamiltonian yields a quasi-energy spectrum consistent with the full numerical Floquet solution that includes all higher bands. In particular, we find that the hybridized $s$-band develops multiple minima and therefore non-trivial Fermi surfaces at different fillings. We then obtain the effective interactions for atoms in the hybridized $s$-band analytically and show that they acquire momentum dependence on the Fermi surface even though the bare interaction is contact-like. We apply the theory to find the phase diagram of fermions with weak attractive interactions and demonstrate that the pairing symmetry is $s+d$-wave. Our theory is valid for a range of shaking frequencies near resonance, and it can be generalized to other phases of interacting fermions in shaken lattices.
We analyze a system of two-component fermions which interact via a Feshbach resonance in the presence of a three-dimensional lattice potential. By expressing a two-channel model of the resonance in the basis of Bloch states appropriate for the lattic
Solid state systems derive their richness from the interplay between interparticle interactions and novel band structures that deviate from those of free particles. Strongly interacting systems, where both of these phenomena are of equal importance,
We propose a physical scheme for the realization of two-dimensional topological odd-parity superfluidity in a spin-independent bond-centered square optical lattice based upon interband fermion pairing. The D4 point-group symmetry of the lattice prote
We report the experimental realization of a topological Creutz ladder for ultracold fermionic atoms in a resonantly driven 1D optical lattice. The two-leg ladder consists of the two lowest orbital states of the optical lattice and the cross inter-leg
To test effective Hamiltonians for strongly interacting fermions in an optical lattice, we numerically find the energy spectrum for two fermions interacting across a Feshbach resonance in a double well potential. From the spectrum, we determine the r