ﻻ يوجد ملخص باللغة العربية
Solid state systems derive their richness from the interplay between interparticle interactions and novel band structures that deviate from those of free particles. Strongly interacting systems, where both of these phenomena are of equal importance, exhibit a variety of theoretically interesting and practically useful phases. Systems of ultracold atoms are rapidly emerging as precise and controllable simulators, and it is precisely in this strongly interacting regime where simulation is the most useful. Here we demonstrate how to hybridize Bloch bands in optical lattices to introduce long-range ferromagnetic order in an itinerant atomic system. We find spontaneously broken symmetry for bosons with a double-well dispersion condensing into one of two distinct minima, which we identify with spin-up and spin-down. The density dynamics following a rapid quench to the ferromagnetic state confirm quantum interference between the two states as the mechanism for symmetry breaking. Unlike spinor condensates, where interaction is driven by small spin-dependent differences in scattering length, our interactions scale with the scattering length itself, leading to domains which equilibrate rapidly and develop sharp boundaries characteristic of a strongly interacting ferromagnet.
We develop a theory of weakly interacting fermionic atoms in shaken optical lattices based on the orbital mixing in the presence of time-periodic modulations. Specifically, we focus on fermionic atoms in circularly shaken square lattice with near res
We analyze a system of two-component fermions which interact via a Feshbach resonance in the presence of a three-dimensional lattice potential. By expressing a two-channel model of the resonance in the basis of Bloch states appropriate for the lattic
We report the experimental realization of a topological Creutz ladder for ultracold fermionic atoms in a resonantly driven 1D optical lattice. The two-leg ladder consists of the two lowest orbital states of the optical lattice and the cross inter-leg
Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott insulator and Superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of the components in the Bose gas within sa
We present experimental evidence showing that an interacting Bose condensate in a shaken optical lattice develops a roton-maxon excitation spectrum, a feature normally associated with superfluid helium. The roton-maxon feature originates from the dou