ﻻ يوجد ملخص باللغة العربية
Consider a general linear Hamiltonian system $partial_{t}u=JLu$ in a Hilbert space $X$. We assume that$ L: X to X^{*}$ induces a bounded and symmetric bi-linear form $leftlangle Lcdot,cdotrightrangle $ on $X$, which has only finitely many negative dimensions $n^{-}(L)$. There is no restriction on the anti-self-dual operator $J: X^{*} supset D(J) to X$. We first obtain a structural decomposition of $X$ into the direct sum of several closed subspaces so that $L$ is blockwise diagonalized and $JL$ is of upper triangular form, where the blocks are easier to handle. Based on this structure, we first prove the linear exponential trichotomy of $e^{tJL}$. In particular, $e^{tJL}$ has at most algebraic growth in the finite co-dimensional center subspace. Next we prove an instability index theorem to relate $n^{-}left( Lright) $ and the dimensions of generalized eigenspaces of eigenvalues of$ JL$, some of which may be embedded in the continuous spectrum. This generalizes and refines previous results, where mostly $J$ was assumed to have a bounded inverse. More explicit information for the indexes with pure imaginary eigenvalues are obtained as well. Moreover, when Hamiltonian perturbations are considered, we give a sharp condition for the structural instability regarding the generation of unstable spectrum from the imaginary axis. Finally, we discuss Hamiltonian PDEs including dispersive long wave models (BBM, KDV and good Boussinesq equations), 2D Euler equation for ideal fluids, and 2D nonlinear Schr{o}dinger equations with nonzero condition at infinity, where our general theory applies to yield stability or instability of some coherent states.
We consider linear stability of steady states of 1(1/2) and 3D Vlasov-Maxwell systems for collisionless plasmas. The linearized systems can be written as separable Hamiltonian systems with constraints. By using a general theory for separable Hamilton
We study the phenomenon of revivals for the linear Schrodinger and Airy equations over a finite interval, by considering several types of non-periodic boundary conditions. In contrast with the case of the linear Schrodinger equation examined recently
Partial differential equations endowed with a Hamiltonian structure, like the Korteweg--de Vries equation and many other more or less classical models, are known to admit rich families of periodic travelling waves. The stability theory for these wave
We consider stability of non-rotating gaseous stars modeled by the Euler-Poisson system. Under general assumptions on the equation of states, we proved a turning point principle (TPP) that the stability of the stars is entirely determined by the mass
We study ground state solutions for linear and nonlinear elliptic PDEs in $mathbb{R}^n$ with (pseudo-)differential operators of arbitrary order. We prove a general symmetry result in the nonlinear case as well as a uniqueness result for ground states