ﻻ يوجد ملخص باللغة العربية
We investigate the interactions of photoexcited carriers with lattice vibrations in thin films of the layered transition metal dichalcogenide (TMDC) WSe$_2$. Employing femtosecond electron diffraction with monocrystalline samples and first principle density functional theory calculations, we obtain a momentum-resolved picture of the energy-transfer from excited electrons to phonons. The measured momentum-dependent phonon population dynamics are compared to first principle calculations of the phonon linewidth and can be rationalized in terms of electronic phase-space arguments. The relaxation of excited states in the conduction band is dominated by intervalley scattering between $Sigma$ valleys and the emission of zone-boundary phonons. Transiently, the momentum-dependent electron-phonon coupling leads to a non-thermal phonon distribution, which, on longer timescales, relaxes to a thermal distribution via electron-phonon and phonon-phonon collisions. Our results constitute a basis for monitoring and predicting out of equilibrium electrical and thermal transport properties for nanoscale applications of TMDCs.
We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorp
Due to high binding energy and oscillator strength, excitons in thin flakes of transition metal dichalcogenides constitute a perfect foundation for realizing a strongly coupled light-matter system. In this paper we investigate mono- and few-layer WSe
Energy relaxation of photo-excited charge carriers is of significant fundamental interest and crucial for the performance of monolayer (1L) transition metal dichaclogenides (TMDs) in optoelectronics. We measure light scattering and emission in 1L-WSe
Low-temperature photoluminescence (PL) of hBN-encapsulated monolayer tungsten diselenide (WSe$_2$) shows a multitude of sharp emission peaks below the bright exciton. Some of them have been recently identified as phonon sidebands of momentum-dark sta
Identifying quantum numbers to label elementary excitations is essential for the correct description of light-matter interaction in solids. In monolayer semiconducting transition metal dichalcogenides (TMDs) such as MoSe$_2$ or WSe$_2$, most optoelec