ﻻ يوجد ملخص باللغة العربية
A systematic study of hadronic masses shows regular oscillations that can be fitted by a simple cosine function. This property can be observed when the difference between adjacent masses of each family is plotted versus the mean mass. This symmetry of oscillation is also observed for the nuclear level masses of given spin.
The fractal property stipulates that the same physical laws apply for different scales of a given physics. This property is applied to particles and nuclei, in order to study the possibility to use it to help for determination of unknown spins of some particles or excited nuclei levels.
The origin of weakly-bound nuclear clusters in hadronic collisions is a key question to be addressed by heavy-ion collision (HIC) experiments. The measured yields of clusters are approximately consistent with expectations from phenomenological statis
We systematically study the nuclear level densities of superheavy nuclei, including odd systems, using the single-particle energies obtained with the Woods-Saxon potential diagonalization. Minimization over many deformation parameters for the global
We present the study for the mass dependence of E$_{bal}$ for various N/Z ratios covering pure symmetric systems to highly neutron-rich ones.
We study the role of impact parameter on the collective flow and its disappearance for different mass asymmetric reactions. The mass asymmetry is varied from 0 to 0.7 keeping the total mass of the system fixed. Our results clearly indicate a signific