ﻻ يوجد ملخص باللغة العربية
We study the role of impact parameter on the collective flow and its disappearance for different mass asymmetric reactions. The mass asymmetry is varied from 0 to 0.7 keeping the total mass of the system fixed. Our results clearly indicate a significant role of impact parameter on the collective flow and its disappearance for the mass asymmetric reactions. The impact parameter dependence is also found to vary with mass asymmetry of the reaction.
We present the study for the mass dependence of E$_{bal}$ for various N/Z ratios covering pure symmetric systems to highly neutron-rich ones.
In relativistic heavy-ion collisions, the strong Lorentz-contracted electromagnetic fields are capable of producing copious numbers of lepton pairs through the two-photon mechanism. Monte Carlo techniques have been developed that allow the exact calc
Using a relativistic hadron transport model, we investigate the utility of the elliptic flow excitation function as a probe for the stiffness of nuclear matter and for the onset of a possible quark-gluon-plasma (QGP) phase-transition at AGS energies
The heavy ion probability for continuum e+ e- pair production has been calculated to all orders in Z alpha as a function of impact parameter. The formula resulting from an exact solution of the semiclassical Dirac equation in the ultrarelativistic li
Fluid dynamical models preceded the first heavy ion accelerator experiments, and led to the main trend of this research since then. In recent years fluid dynamical processes became a dominant direction of research in high energy heavy ion reactions.