ﻻ يوجد ملخص باللغة العربية
We investigate the role of Hunds coupling in the spin-wave excitations of the ($pi, 0$) ordered magnetic state within a five-orbital tight-binding model for iron pnictides. To differentiate between the roles of intraorbital Coulomb interaction and Hunds coupling, we focus on the self-consistently obtained mean-field SDW state with a fixed magnetic moment obtained by using different sets of interaction parameters. We find that the Hunds coupling is crucial for the description of various experimentally observed characteristics of the spin-wave excitations including the anisotropy, energy-dependent behavior, and spin-wave spectral weight distribution.
We investigate the spin-wave excitations in the spin-density wave state of doped iron pnictides within a five-orbital model. We find that the excitations along ($pi, 0$)$rightarrow$($pi, pi$) are very sensitive to the doping whereas they do not exhib
We investigate the impurity scattering induced quasiparticle interference in the ($pi, 0$) spin-density wave phase of the iron pnictides. We use a five orbital tight binding model and our mean field theory in the clean limit captures key features of
We calculate the expected finite frequency neutron scattering intensity based on the two-sublattice collinear antiferromagnet found by recent neutron scattering experiments as well as by theoretical analysis on the iron oxypnictide LaOFeAs. We consid
We study a two-orbital spin model to describe (pi,0) stripe antiferromagnetism in the iron pnictides. The double-spin model has an on-site Hundss coupling and inter-site interactions extending to second neighbors (inter- and intra-orbital) on the squ
We report on systematic excitation-density dependent all-optical femtosecond time resolved study of the spin-density wave state in iron-based superconductors. The destruction and recovery dynamics are measured by means of the standard and a multi-pul