ﻻ يوجد ملخص باللغة العربية
The electronic stopping cross sections (SCS) of Ta and Gd for slow protons have been investigated experimentally. The data are compared to the results for Pt and Au to learn how electronic stopping in transition and rare earth metals correlates with features of the electronic band structures. The extraordinarily high SCS observed for protons in Ta and Gd cannot be understood in terms of a free electron gas model, but are related to the high densities of both occupied and unoccupied electronic states in these metals.
Electronic stopping of slow protons in ZnO, VO2 (metal and semiconductor phases), HfO2, and Ta2O5 was investigated experimentally. As a comparison of the resulting stopping cross sections (SCS) to data for Al2O3 and SiO2 reveals, electronic stopping
The design and synthesis of targeted functional materials have been a long-term goal for material scientists. Although a universal design strategy is difficult to generate for all types of materials, however, it is still helpful for a typical family
Information technology demands continuous increase of data-storage density. In high-density magnetic recording media, the large magneto-crystalline anisotropy (MCA) stabilizes the stored information against decay through thermal fluctuations. In the
The electronic structures of substitutional rare-earth (RE) impurities in GaAs and cubic GaN are calculated. The total energy is evaluated with the self-interaction corrected local spin density approximation, by which several configurations of the op
Doping NiFe by heavy rare earth atoms alters the magnetic relaxation properties of this material drastically. We show that this effect can be well explained by the slow relaxing impurity mechanism. This process is a consequence of the anisotropy of t