ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulent thermal convection over rough plates with varying roughness geometries

69   0   0.0 ( 0 )
 نشر من قبل Yi-Chao Xie
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a systematic investigation of the effects of roughness geometry on turbulent Rayleigh-Benard convection (RBC) over rough plates with pyramid-shaped and periodically distributed roughness elements. Using a parameter $lambda$ defined as the height of a roughness element over its base width, the heat transport, the flow dynamics and local temperatures are measured for the Rayleigh number range $7.50times 10^{7} leq Raleq 1.31times 10^{11}$, and the Prandtl number $Pr$ from 3.57 to 23.34 at four values of $lambda$. It is found that the heat transport scaling, i.e. $Nusim Ra^{alpha}$ where $Nu$ is the Nusselt number, may be classified into three regimes. In Regime I, the system is in a dynamically smooth state. The heat transport scaling is the same as that in a smooth cell. In Regimes II and III, the heat transport enhances. When $lambda$ is increased from 0.5 to 4.0, $alpha$ increases from 0.36 to 0.59 in Regime II, and it increases from 0.30 to 0.50 in Regime III. The experiment demonstrates the heat transport scaling in turbulent RBC can be manipulated using $lambda$. Previous studies suggest that the transition from Regime I to Regime II, occurs when the thermal boundary layer (BL) thickness becomes smaller than the roughness height $h$. Direct measurements of the viscous BL in the present study suggest that the transition from Regime II to Regime III is likely a result of the viscous BL thickness becoming smaller $h$. The scaling exponent of the Reynolds number $Re$ vs. $Ra$ changes from 0.471 to 0.551 when $lambda$ is increased from 0.5 to 4.0. It is also found that increasing $lambda$ increases the clustering of thermal plumes which effectively increases the plumes lifetime that are ultimately responsible for the enhanced heat transport.



قيم البحث

اقرأ أيضاً

102 - P. Urban , T. Kralik , M. Macek 2021
We report an experimental study aiming to clarify the role of boundary conditions (BC) in high Rayleigh number $10^8 < {rm{Ra}} < 3 times 10^{12}$ turbulent thermal convection of cryogenic helium gas. We switch between BC closer to constant heat flux (CF) and constant temperature (CT) applied to the highly conducting bottom plate of the aspect ratio one cylindrical cell 30 cm in size, leading to dramatic changes in the temperature probability density function and in power spectral density of the temperature fluctuations measured at the bottom plate, while the dynamic thermal behaviour of the top plate and bulk convective flow remain unaffected. Within our experimental accuracy, we find no appreciable changes in Reynolds number Re(Ra) scaling, in the dimensionless heat transfer efficiency expressed via Nusselt number Nu(Ra) scaling, nor in the rate of direction reversals of large scale circulation.
Direct Numerical Simulations are used to solve turbulent flow and heat transfer over a variety of rough walls in a channel. The wall geometries are exactly resolved in the simulations. The aim is to understand the effect of roughness morphology and i ts scaling on the augmentation of heat transfer relative to that of skin friction. A number of realistic rough surface maps obtained from the scanning of gas turbine blades and internal combustion engines as well as several artificially generated rough surfaces are examined. In the first part of the paper, effects of statistical surface properties, namely surface slope and roughness density, at constant roughness height are systematically investigated, and it is shown that Reynolds analogy factor (two times Stanton number divided by skin friction coefficient) varies meaningfully but moderately with the surface parameters except for the case with extremely low slope or density where the Reynolds analogy factor grows significantly and tends to that of a smooth wall. In the second part of the paper, the roughness height is varied (independently in both inner and outer units) while the geometrical similarity is maintained. Considering all the simulated cases, it is concluded that Reynolds analogy factor correlates fairly well with the equivalent sand roughness scaled in inner units and asymptotically tends to a plateau.
We report an experimental study of the three-dimensional spatial structure of the low frequency temperature oscillations in a cylindrical Rayleigh-B{e}nard convection cell. It is found that thermal plumes are not emitted periodically, but randomly an d continuously, from the top and bottom plates. We further found that the oscillation of the temperature field does not originate from the boundary layers, but rather is a result of the horizontal motion of the hot ascending and cold descending fluids being modulated by the twisting and sloshing motion of the bulk flow field.
Recently, in Zhang et al. (2020), it was found that in rapidly rotating turbulent Rayleigh-Benard convection (RBC) in slender cylindrical containers (with diameter-to-height aspect ratio $Gamma=1/2$) filled with a small-Prandtl-number fluid ($Pr appr ox0.8$), the Large Scale Circulation (LSC) is suppressed and a Boundary Zonal Flow (BZF) develops near the sidewall, characterized by a bimodal PDF of the temperature, cyclonic fluid motion, and anticyclonic drift of the flow pattern (with respect to the rotating frame). This BZF carries a disproportionate amount ($>60%$) of the total heat transport for $Pr < 1$ but decreases rather abruptly for larger $Pr$ to about $35%$. In this work, we show that the BZF is robust and appears in rapidly rotating turbulent RBC in containers of different $Gamma$ and in a broad range of $Pr$ and $Ra$. Direct numerical simulations for $0.1 leq Pr leq 12.3$, $10^7 leq Ra leq 5times10^{9}$, $10^{5} leq 1/Ek leq 10^{7}$ and $Gamma$ = 1/3, 1/2, 3/4, 1 and 2 show that the BZF width $delta_0$ scales with the Rayleigh number $Ra$ and Ekman number $Ek$ as $delta_0/H sim Gamma^{0} Pr^{{-1/4, 0}} Ra^{1/4} Ek^{2/3}$ (${Pr<1, Pr>1}$) and the drift frequency as $omega/Omega sim Gamma^{0} Pr^{-4/3} Ra Ek^{5/3}$, where $H$ is the cell height and $Omega$ the angular rotation rate. The mode number of the BZF is 1 for $Gamma lesssim 1$ and $2 Gamma$ for $Gamma$ = {1,2} independent of $Ra$ and $Pr$. The BZF is quite reminiscent of wall mode states in rotating convection.
65 - Ao Xu , Shi Tao , Le Shi 2020
We analyze the transport and deposition behavior of dilute microparticles in turbulent Rayleigh-Benard convection. Two-dimensional direct numerical simulations were carried out for the Rayleigh number ($Ra$) of $10^{8}$ and the Prandtl number ($Pr$) of 0.71 (corresponding to the working fluids of air). The Lagrangian point particle model was used to describe the motion of microparticles in the turbulence. Our results show that the suspended particles are homogeneously distributed in the turbulence for the Stokes number ($St$) less than $10^{-3}$, and they tend to cluster into bands for $10^{-3} lesssim St lesssim 10^{-2}$. At even larger $St$, the microparticles will quickly sediment in the convection. We also calculate the mean-square displacement (MSD) of the particles trajectories. At short time intervals, the MSD exhibits a ballistic regime, and it is isotropic in vertical and lateral directions; at longer time intervals, the MSD reflects a confined motion for the particles, and it is anisotropic in different directions. We further obtained a phase diagram of the particle deposition positions on the wall, and we identified three deposition states depending on the particles density and diameter. An interesting finding is that the dispersed particles preferred to deposit on the vertical wall where the hot plumes arise, which is verified by tilting the cell and altering the rotation direction of the large-scale circulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا