ﻻ يوجد ملخص باللغة العربية
We theoretically study transport properties of voltage-biased one-dimensional superconductor--normal metal--superconductor tunnel junctions with arbitrary junction transparency where the superconductors can have trivial or nontrivial topology. Motivated by recent experimental efforts on Majorana properties of superconductor-semiconductor hybrid systems, we consider two explicit models for topological superconductors: (i) spinful p-wave, and (ii) spin-split spin-orbit-coupled s-wave. We provide a comprehensive analysis of the zero-temperature dc current $I$ and differential conductance $dI/dV$ of voltage-biased junctions with or without Majorana zero modes (MZMs). The presence of an MZM necessarily gives rise to two tunneling conductance peaks at voltages $eV = pm Delta_{mathrm{lead}}$, i.e., the voltage at which the superconducting gap edge of the lead aligns with the MZM. We find that the MZM conductance peak probed by a superconducting lead $without$ a BCS singularity has a non-universal value which decreases with decreasing junction transparency. This is in contrast to the MZM tunneling conductance measured by a superconducting lead $with$ a BCS singularity, where the conductance peak in the tunneling limit takes the quantized value $G_M = (4-pi)2e^2/h$ independent of the junction transparency. We also discuss the subharmonic gap structure, a consequence of multiple Andreev reflections, in the presence and absence of MZMs. Finally, we show that for finite-energy Andreev bound states (ABSs), the conductance peaks shift away from the gap bias voltage $eV = pm Delta_{mathrm{lead}}$ to a larger value set by the ABSs energy. Our work should have important implications for the extensive current experimental efforts toward creating topological superconductivity and MZMs in semiconductor nanowires proximity coupled to ordinary s-wave superconductors.
We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that f
We investigate theoretically the simultaneous tunneling of two electrons from a superconductor into a normal metal at low temperatures and voltages. Such an emission process is shown to be equivalent to the Andreev reflection of an incident hole. We
We study low temperature electron transport in p-wave superconductor-insulator-normal metal junctions. In diffusive metals the p-wave component of the order parameter decays exponentially at distances larger than the mean free path $l$. At the superc
We present measurements of current noise and cross-correlations in three-terminal Superconductor-Normal metal-Superconductor (S-N-S) nanostructures that are potential solid-state entanglers thanks to Andreev reflections at the N-S interfaces. The noi
A superconductor subject to electromagnetic irradiation in the terahertz range can show amplitude oscillations of its order parameter. However, coupling this so-called Higgs mode to the charge current is notoriously difficult. We propose to achieve s