ترغب بنشر مسار تعليمي؟ اضغط هنا

Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

106   0   0.0 ( 0 )
 نشر من قبل Shiro Kawabata
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits.

قيم البحث

اقرأ أيضاً

188 - P. Pandey , R. Kraft , R. Krupke 2019
We report the study of ballistic transport in normal metal/graphene/superconductor junctions in edge-contact geometry. While in the normal state, we have observed Fabry-P{e}rot resonances suggesting that charge carriers travel ballistically, the supe rconducting state shows that the Andreev reflection at the graphene/superconductor interface is affected by these interferences. Our experimental results in the superconducting state have been analyzed and explained with a modified Octavio-Tinkham-Blonder-Klapwijk model taking into account the magnetic pair-breaking effects and the two different interface transparencies, textit{i.e.},between the normal metal and graphene, and between graphene and the superconductor. We show that the transparency of the normal metal/graphene interface strongly varies with doping at large scale, while it undergoes weaker changes at the graphene/superconductor interface. When a cavity is formed by the charge transfer occurring in the vicinity of the contacts, we see that the transmission probabilities follow the normal state conductance highlighting the interplay between the Andreev processes and the electronic interferometer.
We theoretically study transport properties of voltage-biased one-dimensional superconductor--normal metal--superconductor tunnel junctions with arbitrary junction transparency where the superconductors can have trivial or nontrivial topology. Motiva ted by recent experimental efforts on Majorana properties of superconductor-semiconductor hybrid systems, we consider two explicit models for topological superconductors: (i) spinful p-wave, and (ii) spin-split spin-orbit-coupled s-wave. We provide a comprehensive analysis of the zero-temperature dc current $I$ and differential conductance $dI/dV$ of voltage-biased junctions with or without Majorana zero modes (MZMs). The presence of an MZM necessarily gives rise to two tunneling conductance peaks at voltages $eV = pm Delta_{mathrm{lead}}$, i.e., the voltage at which the superconducting gap edge of the lead aligns with the MZM. We find that the MZM conductance peak probed by a superconducting lead $without$ a BCS singularity has a non-universal value which decreases with decreasing junction transparency. This is in contrast to the MZM tunneling conductance measured by a superconducting lead $with$ a BCS singularity, where the conductance peak in the tunneling limit takes the quantized value $G_M = (4-pi)2e^2/h$ independent of the junction transparency. We also discuss the subharmonic gap structure, a consequence of multiple Andreev reflections, in the presence and absence of MZMs. Finally, we show that for finite-energy Andreev bound states (ABSs), the conductance peaks shift away from the gap bias voltage $eV = pm Delta_{mathrm{lead}}$ to a larger value set by the ABSs energy. Our work should have important implications for the extensive current experimental efforts toward creating topological superconductivity and MZMs in semiconductor nanowires proximity coupled to ordinary s-wave superconductors.
We study low temperature electron transport in p-wave superconductor-insulator-normal metal junctions. In diffusive metals the p-wave component of the order parameter decays exponentially at distances larger than the mean free path $l$. At the superc onductor-normal metal boundary, due to spin-orbit interaction, there is a triplet to singlet conversion of the superconducting order parameter. The singlet component survives at distances much larger than $l$ from the boundary. It is this component that controls the low temperature resistance of the junctions. As a result, the resistance of the system strongly depends on the angle between the insulating boundary and the ${bf d}$-vector characterizing the spin structure of the triplet superconducting order parameter. We also analyze the spatial dependence of the electric potential in the presence of the current, and show that the electric field is suppressed in the insulating boundary as well as in the normal metal at distances of order of the coherence length away from the boundary. This is very different from the case of the normal metal-insulator-normal metal junctions, where the voltage drop takes place predominantly at the insulator.
Efficient electron-refrigeration based on a normal-metal/spin-filter/superconductor junction is proposed and demonstrated theoretically. The spin-filtering effect leads to values of the cooling power much higher than in conventional normal-metal/nonm agnetic-insulator/superconductor coolers and allows for an efficient extraction of heat from the normal metal. We demonstrate that highly efficient cooling can be realized in both ballistic and diffusive multi-channel junctions in which the reduction of the electron temperature from 300 mK to around 50 mK can be achieved. Our results indicate the practical usefulness of spin-filters for efficiently cooling detectors, sensors, and quantum devices.
We investigate heat and charge transport in NNIS tunnel junctions in the diffusive limit. Here N and S are massive normal and superconducting electrodes (reservoirs), N is a normal metal strip, and I is an insulator. The flow of electric current in s uch structures at subgap bias is accompanied by heat transfer from the normal metal into the superconductor, which enables refrigeration of electrons in the normal metal. We show that the two-particle current due to Andreev reflection generates Joule heating, which is deposited in the N electrode and dominates over the single-particle cooling at low enough temperatures. This results in the existence of a limiting temperature for refrigeration. We consider different geometries of the contact: one-dimensional and planar, which is commonly used in the experiments. We also discuss the applicability of our results to a double-barrier SINIS microcooler.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا