ﻻ يوجد ملخص باللغة العربية
We present an analytical study of the mode degeneracy in non-Hermitian photonic crystals (PC) with $C_{4v}$ symmetry, from the perspective of the coupled-wave-theory (CWT). The wave couplings and leakages within the non-Hermitian PCs are depicted, and the condition of accidental triple degeneracy is derived which leads to a Dirac-cone like dispersion. We prove that, similar to the real Dirac-cone, the Dirac-cone like band in non-Hermitian PC possesses good linearity and isotropy in the vicinity of the $Gamma$ point. Moreover, some topological transit of the band may occur when the parameters adiabatically evolve. However, the Berry phase remains zero at the $Gamma$ point, indicated the Dirac-like-cone dosent obey Dirac equation and it is only Dirac-cone.
The effects of gain and loss on the band structures of a bulk topological dielectric photonic crystal (PC) with $C_{6v}$ symmetry and the PC-air-PC interface are studied based on first-principle calculation. To illustrate the importance of parity-tim
We discuss the effective photonic potential for TM waves in inhomogeneous isotropic media. The model provides an easy and intuitive comprehension of form birefringence, paving the way for a new approach on the design of graded-index optical waveguide
In this paper, a non-Hermitian two-dimensional photonic crystal flat lens is proposed. The negative refraction of the second band of photonic crystal is utilized to realize super-resolution imaging of the point source. Based on the principles of non-
Structural disorder results in multiple scattering in real photonic crystals, which have been widely used for applications and studied for fundamental interests. The interaction of light with such complex photonic media is expected to show interplay
We report a general description of quasi-phase-matched parametric process in nonlinear photonic crystals (NLPC) by extending the conventional X-ray diffraction theory in solids. Under the virtual wave approximation, phase-matching resonance is equiva