ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of doping on lattice instabilities of single-layer 1H-TaS2

42   0   0.0 ( 0 )
 نشر من قبل Oliver Albertini
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent ARPES measurements of single-layer 1H-TaS2 grown on Au(111) suggest strong electron doping from the substrate. In addition, STM/STS measurements on this system show suppression of the charge-density-wave (CDW) instability that occurs in bulk 2H-TaS2. We present results from ab initio DFT calculations of free-standing single-layer 1H-TaS2 to explore the effects of doping on the CDW. In the harmonic approximation, we find that a lattice instability along the Gamma-M line occurs in the undoped monolayer, consistent with the bulk 3x3 CDW ordering vector. Doping removes the CDW instability, in agreement with the experimental findings. The doping and momentum dependence of both the electron-phonon coupling and of the bare phonon energy (unscreened by metallic electrons) determine the stability of lattice vibrations. Electron doping also causes an expansion of the lattice, so strain is a secondary but also relevant effect.

قيم البحث

اقرأ أيضاً

Recent experiments have found that monolayer 1H-TaS2 grown on Au(111) lacks the charge density wave (CDW) instability exhibited by bulk 2H-TaS2. Additionally, angle-resolved photoemission spectroscopy measurements suggest that the monolayer becomes s trongly electron doped by the substrate. While density functional theory (DFT) calculations have shown that electron doping can suppress the CDW instability in monolayer 1H-TaS2, it has been suggested that the actual charge transfer from the substrate may be much smaller than the apparent doping deduced from photoemission data. We present DFT calculations of monolayer 1H-TaS2 on Au(111) to explore substrate effects beyond doping. We find that the CDW instability is suppressed primarily by strong S-Au interactions rather than by doping. The S-Au interaction results in a structural distortion of the TaS2 monolayer characterized by both lateral and out-of-plane atomic displacements and a 7 x 7 periodicity dictated by the commensurate interface with Au. Simulated STM images of this 7 x 7 distorted structure are consistent with experimental STM images. In contrast, we find a robust 3 x 3 CDW phase in monolayer 1H-TaS2 on a graphene substrate with which there is minimal interaction.
Molybdenum disulfide (MoS2) of single and few-layer thickness was exfoliated on SiO2/Si substrate and characterized by Raman spectroscopy. The number of S-Mo-S layers of the samples was independently determined by contact-mode atomic-force microscopy . Two Raman modes, E12g and A1g, exhibited sensitive thickness dependence, with the frequency of the former decreasing and that of the latter increasing with thickness. The results provide a convenient and reliable means for determining layer thickness with atomic-level precision. The opposite direction of the frequency shifts, which cannot be explained solely by van der Waals interlayer coupling, is attributed to Coulombic interactions and possible stacking-induced changes of the intralayer bonding. This work exemplifies the evolution of structural parameters in layered materials in changing from the 3-dimensional to the 2-dimensional regime.
Here, we report the growth and characterization of single crystals of NdxSb2-xTe3, by solid state reaction route via self-flux method. The phase and layered growth are confirmed through x-ray diffraction and Scanning electron microscopy respectively. A slight contraction in lattice parameters is seen after Nd doping. Also a minute shift in vibrational modes of recorded Raman spectra has been observed by doping of Nd in Sb2Te3. The magneto-resistance values under magnetic field of 5Tesla for Sb2Te3 are 75 percent at 2.5K and 60 percent at 20K, but only 40 percent at 5K for Nd0.1Sb1.9Te3. DC magnetic measurements exhibit expected diamagnetic and paramagnetic behaviors for pure and Nd doped crystals respectively. A cusp-like behavior is observed in magneto conductivity of both pure and Nd doped crystals at low magnetic fields below 1 Tesla which is analyzed using Hikami Larkin Nagaoka (HLN) model. For Sb2Te3 the fitted parameters alpha values are -1.02 and -0.58 and the phase coherence lengths are 50.8(6)nm & 34.9(8)nm at temperatures 2.5K and 20K respectively. For Nd0.1Sb1.9Te3, alpha is -0.29 and coherence length is 27.2(1) nm at 5K. The {alpha} values clearly show the presence of weak anti localization effect in both, pure and Nd doped samples. Also with Nd doping, the contribution of bulk states increases in addition to conducting surface states in overall conduction mechanism.
128 - J. J. Gao , W. H. Zhang , J. G. Si 2021
We investigate the Ti-doping effect on the charge density wave (CDW) of 1T-TaS2 by combining scanning tunneling microscopy (STM) measurements and first-principle calculations. Although the Ti-doping induced phase evolution seems regular with increasi ng of the doping concentration (x), an unexpected chiral CDW phase is observed in the sample with x = 0.08, in which Ti atoms almost fully occupy the central Ta atoms in the CDW clusters. The emergence of the chiral CDW is proposed to be from the doping-enhanced orbital order. Only when x = 0.08, the possible long-range orbital order can trigger the chiral CDW phase. Compared with other 3d-elements doped 1T-TaS2, the Ti-doping retains the electronic flat band and the corresponding CDW phase, which is a prerequisite for the emergence of chirality. We expect that introducing elements with a strong orbital character may induce a chiral charge order in a broad class of CDW systems. The present results open up another avenue for further exploring the chiral CDW materials.
Thermoelectric properties of the chemically-doped intermetallic narrow-band semiconductor FeGa3 are reported. The parent compound shows semiconductor-like behavior with a small band gap (Eg = 0.2 eV), a carrier density of ~ 10(18) cm-3 and, a large n -type Seebeck coefficient (S ~ -400 mu V/K) at room temperature. Hall effect measurements indicate that chemical doping significantly increases the carrier density, resulting in a metallic state, while the Seebeck coefficient still remains fairly large (~ -150 mu V/K). The largest power factor (S2/{rho} = 62 mu W/m K2) and corresponding figure of merit (ZT = 0.013) at 390 K were observed for Fe0.99Co0.01(Ga0.997Ge0.003)3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا