ترغب بنشر مسار تعليمي؟ اضغط هنا

Substrate-induced suppression of charge density wave in monolayer 1H-TaS2 on Au(111)

406   0   0.0 ( 0 )
 نشر من قبل Heraclitos Lefcochilos-Fogelquist
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments have found that monolayer 1H-TaS2 grown on Au(111) lacks the charge density wave (CDW) instability exhibited by bulk 2H-TaS2. Additionally, angle-resolved photoemission spectroscopy measurements suggest that the monolayer becomes strongly electron doped by the substrate. While density functional theory (DFT) calculations have shown that electron doping can suppress the CDW instability in monolayer 1H-TaS2, it has been suggested that the actual charge transfer from the substrate may be much smaller than the apparent doping deduced from photoemission data. We present DFT calculations of monolayer 1H-TaS2 on Au(111) to explore substrate effects beyond doping. We find that the CDW instability is suppressed primarily by strong S-Au interactions rather than by doping. The S-Au interaction results in a structural distortion of the TaS2 monolayer characterized by both lateral and out-of-plane atomic displacements and a 7 x 7 periodicity dictated by the commensurate interface with Au. Simulated STM images of this 7 x 7 distorted structure are consistent with experimental STM images. In contrast, we find a robust 3 x 3 CDW phase in monolayer 1H-TaS2 on a graphene substrate with which there is minimal interaction.



قيم البحث

اقرأ أيضاً

Substrate engineering provides an opportunity to modulate the physical properties of quantum materials in thin film form. Here we report that TiSe$_2$ thin films grown on TiO$_2$ have unexpectedly large electron doping that suppresses the charge dens ity wave (CDW) order. This is dramatically different from either bulk single crystal TiSe$_2$ or TiSe$_2$ thin films on graphene. The epitaxial TiSe$_2$ thin films can be prepared on TiO$_2$ via molecular beam epitaxy (MBE) in two ways: by conventional co-deposition using selenium and titanium sources, and by evaporating only selenium on reconstructed TiO$_2$ surfaces. Both growth methods yield atomically flat thin films with similar physical properties. The electron doping and subsequent suppression of CDW order can be explained by selenium vacancies in the TiSe$_2$ film, which naturally occur when TiO$_2$ substrates are used. This is due to the stronger interfacial bonding that changes the ideal growth conditions. Our finding provides a way to tune the chemical potential of chalcogenide thin films via substrate selection and engineering.
Despite the progress made in successful prediction of many classes of weakly-correlated topological materials, it is not clear how a topological order can emerge from interacting orders and whether or not a charge ordered topological state can exist in a two-dimensional (2D) material. Here, through first-principles modeling and analysis, we identify a 2$times$2 charge density wave (CDW) phase in monolayer $2H$-NbSe$_2$ that harbors coexisting quantum spin Hall (QSH) insulator, topological crystalline insulator (TCI) and topological nodal line (TNL) semimetal states. The topology in monolayer NbSe$_2$ is driven by the formation of the CDW and the associated symmetry-breaking periodic lattice distortions and not via a pre-existing topology. Our finding of an emergent triple-topological state in monolayer $2H$-NbSe$_2$ will offer novel possibilities for exploring connections between different topologies and a unique materials platform for controllable CDW-induced topological states for potential applications in quantum electronics and spintronics and Majorana-based quantum computing.
There is immense interest in how the local environment influences the electronic structure of materials at the single layer limit. We characterize moire induced spatial variations in the electronic structure of in-situ grown monolayer V2S3 on Au(111) by means of low temperature scanning tunneling microscopy and spectroscopy. We observe a long-range modulation of the integrated local density of states (LDOS), and quantify this modulation with respect to the moire superstructure for multiple orientations of the monolayer with respect to the substrate. Scanning tunneling spectroscopy reveals a prominent peak in the LDOS, which is shifted in energy at different points of the moire superstructure. Comparing ab initio calculations with angle-resolved photoemission, we are able to attribute this peak to bands that exhibit a large out-of-plane d-orbital character. This suggests that the moire driven variations in the measured density of states is driven by a periodic modulation of the monolayer-substrate hybridization.
128 - J. J. Gao , W. H. Zhang , J. G. Si 2021
We investigate the Ti-doping effect on the charge density wave (CDW) of 1T-TaS2 by combining scanning tunneling microscopy (STM) measurements and first-principle calculations. Although the Ti-doping induced phase evolution seems regular with increasi ng of the doping concentration (x), an unexpected chiral CDW phase is observed in the sample with x = 0.08, in which Ti atoms almost fully occupy the central Ta atoms in the CDW clusters. The emergence of the chiral CDW is proposed to be from the doping-enhanced orbital order. Only when x = 0.08, the possible long-range orbital order can trigger the chiral CDW phase. Compared with other 3d-elements doped 1T-TaS2, the Ti-doping retains the electronic flat band and the corresponding CDW phase, which is a prerequisite for the emergence of chirality. We expect that introducing elements with a strong orbital character may induce a chiral charge order in a broad class of CDW systems. The present results open up another avenue for further exploring the chiral CDW materials.
323 - L. J. Li , W. J. Lu , X. D. Zhu 2011
We report the interplay between charge-density-wave (CDW) and superconductivity of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ ($0leq x leq 0.05$) single crystals. The CDW order is gradually suppressed by Fe-doping, accompanied by the disappearance of pseudogap/M ott-gap as shown by the density functional theory (DFT) calculations. The superconducting state develops at low temperatures within the CDW state for the samples with the moderate doping levels. The superconductivity strongly depends on $x$ within a narrow range, and the maximum superconducting transition temperature is 2.8 K as $x=0.02$. We propose that the induced superconductivity and CDW phases are separated in real space. For high doping level ($x>0.04$), the Anderson localization (AL) state appears, resulting in a large increase of resistivity. We present a complete electronic phase diagram of 1$T$-Fe$_{x}$Ta$_{1-x}$S$_{2}$ system that shows a dome-like $T_{c}(x)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا