ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchronization Problems in Automata without Non-trivial Cycles

57   0   0.0 ( 0 )
 نشر من قبل Andrew Ryzhikov
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Andrew Ryzhikov




اسأل ChatGPT حول البحث

We study the computational complexity of various problems related to synchronization of weakly acyclic automata, a subclass of widely studied aperiodic automata. We provide upper and lower bounds on the length of a shortest word synchronizing a weakly acyclic automaton or, more generally, a subset of its states, and show that the problem of approximating this length is hard. We investigate the complexity of finding a synchronizing set of states of maximum size. We also show inapproximability of the problem of computing the rank of a subset of states in a binary weakly acyclic automaton and prove that several problems related to recognizing a synchronizing subset of states in such automata are NP-complete.



قيم البحث

اقرأ أيضاً

177 - Olivier Finkel 2011
We prove that some fairly basic questions on automata reading infinite words depend on the models of the axiomatic system ZFC. It is known that there are only three possibilities for the cardinality of the complement of an omega-language $L(A)$ accep ted by a Buchi 1-counter automaton $A$. We prove the following surprising result: there exists a 1-counter Buchi automaton $A$ such that the cardinality of the complement $L(A)^-$ of the omega-language $L(A)$ is not determined by ZFC: (1). There is a model $V_1$ of ZFC in which $L(A)^-$ is countable. (2). There is a model $V_2$ of ZFC in which $L(A)^-$ has cardinal $2^{aleph_0}$. (3). There is a model $V_3$ of ZFC in which $L(A)^-$ has cardinal $aleph_1$ with $aleph_0<aleph_1<2^{aleph_0}$. We prove a very similar result for the complement of an infinitary rational relation accepted by a 2-tape Buchi automaton $B$. As a corollary, this proves that the Continuum Hypothesis may be not satisfied for complements of 1-counter omega-languages and for complements of infinitary rational relations accepted by 2-tape Buchi automata. We infer from the proof of the above results that basic decision problems about 1-counter omega-languages or infinitary rational relations are actually located at the third level of the analytical hierarchy. In particular, the problem to determine whether the complement of a 1-counter omega-language (respectively, infinitary rational relation) is countable is in $Sigma_3^1 setminus (Pi_2^1 cup Sigma_2^1)$. This is rather surprising if compared to the fact that it is decidable whether an infinitary rational relation is countable (respectively, uncountable).
We study extremal and algorithmic questions of subset and careful synchronization in monotonic automata. We show that several synchronization problems that are hard in general automata can be solved in polynomial time in monotonic automata, even with out knowing a linear order of the states preserved by the transitions. We provide asymptotically tight bounds on the maximum length of a shortest word synchronizing a subset of states in a monotonic automaton and a shortest word carefully synchronizing a partial monotonic automaton. We provide a complexity framework for dealing with problems for monotonic weakly acyclic automata over a three-letter alphabet, and use it to prove NP-completeness and inapproximability of problems such as {sc Finite Automata Intersection} and the problem of computing the rank of a subset of states in this class. We also show that checking whether a monotonic partial automaton over a four-letter alphabet is carefully synchronizing is NP-hard. Finally, we give a simple necessary and sufficient condition when a strongly connected digraph with a selected subset of vertices can be transformed into a deterministic automaton where the corresponding subset of states is synchronizing.
100 - Pierre Ganty 2016
We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating beha vior of the stack along the run. We study languages accepted by pushdown automata restricted to k-oscillating runs. We relate oscillation on pushdown automata with a counterpart restriction on context-free grammars. We also provide a way to filter all but the k-oscillating runs from a given PDA by annotating stack symbols with information about the oscillation. Finally, we study closure properties of the defined class of languages and the complexity of the k-emptiness problem asking, given a pushdown automaton P and k >= 0, whether P has a k-oscillating run. We show that, when k is not part of the input, the k-emptiness problem is NLOGSPACE-complete.
We approach the task of computing a carefully synchronizing word of optimum length for a given partial deterministic automaton, encoding the problem as an instance of SAT and invoking a SAT solver. Our experiments demonstrate that this approach gives satisfactory results for automata with up to 100 states even if very modest computational resources are used. We compare our results with the ones obtained by the first author for exact synchronization, which is another version of synchronization studied in the literature, and draw some theoretical conclusions.
131 - Andrew Ryzhikov 2017
In this note we study automata recognizing birecurrent sets. A set of words is birecurrent if the minimal partial DFA recognizing this set and the minimal partial DFA recognizing the reversal of this set are both strongly connected. This notion was i ntroduced by Perrin, and Dolce et al. provided a characterization of such sets. We prove that deciding whether a partial DFA recognizes a birecurrent set is a PSPACE-complete problem. We show that this problem is PSPACE-complete even in the case of binary partial DFAs with all states accepting and in the case of binary complete DFAs. We also consider a related problem of computing the rank of a partial DFA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا