ترغب بنشر مسار تعليمي؟ اضغط هنا

Dropping Convexity for More Efficient and Scalable Online Multiview Learning

114   0   0.0 ( 0 )
 نشر من قبل Zhehui Chen
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiview representation learning is very popular for latent factor analysis. It naturally arises in many data analysis, machine learning, and information retrieval applications to model dependent structures among multiple data sources. For computational convenience, existing approaches usually formulate the multiview representation learning as convex optimization problems, where global optima can be obtained by certain algorithms in polynomial time. However, many pieces of evidence have corroborated that heuristic nonconvex approaches also have good empirical computational performance and convergence to the global optima, although there is a lack of theoretical justification. Such a gap between theory and practice motivates us to study a nonconvex formulation for multiview representation learning, which can be efficiently solved by a simple stochastic gradient descent (SGD) algorithm. We first illustrate the geometry of the nonconvex formulation; Then, we establish asymptotic global rates of convergence to the global optima by diffusion approximations. Numerical experiments are provided to support our theory.

قيم البحث

اقرأ أيضاً

Several learning problems involve solving min-max problems, e.g., empirical distributional robust learning or learning with non-standard aggregated losses. More specifically, these problems are convex-linear problems where the minimization is carried out over the model parameters $winmathcal{W}$ and the maximization over the empirical distribution $pinmathcal{K}$ of the training set indexes, where $mathcal{K}$ is the simplex or a subset of it. To design efficient methods, we let an online learning algorithm play against a (combinatorial) bandit algorithm. We argue that the efficiency of such approaches critically depends on the structure of $mathcal{K}$ and propose two properties of $mathcal{K}$ that facilitate designing efficient algorithms. We focus on a specific family of sets $mathcal{S}_{n,k}$ encompassing various learning applications and provide high-probability convergence guarantees to the minimax values.
Online learning is a powerful tool for analyzing iterative algorithms. However, the classic adversarial setup sometimes fails to capture certain regularity in online problems in practice. Motivated by this, we establish a new setup, called Continuous Online Learning (COL), where the gradient of online loss function changes continuously across rounds with respect to the learners decisions. We show that COL covers and more appropriately describes many interesting applications, from general equilibrium problems (EPs) to optimization in episodic MDPs. Using this new setup, we revisit the difficulty of achieving sublinear dynamic regret. We prove that there is a fundamental equivalence between achieving sublinear dynamic regret in COL and solving certain EPs, and we present a reduction from dynamic regret to both static regret and convergence rate of the associated EP. At the end, we specialize these new insights into online imitation learning and show improved understanding of its learning stability.
Optimization in machine learning, both theoretical and applied, is presently dominated by first-order gradient methods such as stochastic gradient descent. Second-order optimization methods, that involve second derivatives and/or second order statist ics of the data, are far less prevalent despite strong theoretical properties, due to their prohibitive computation, memory and communication costs. In an attempt to bridge this gap between theoretical and practical optimization, we present a scalable implementation of a second-order preconditioned method (concretely, a variant of full-matrix Adagrad), that along with several critical algorithmic and numerical improvements, provides significant convergence and wall-clock time improvements compared to conventional first-order methods on state-of-the-art deep models. Our novel design effectively utilizes the prevalent heterogeneous hardware architecture for training deep models, consisting of a multicore CPU coupled with multiple accelerator units. We demonstrate superior performance compared to state-of-the-art on very large learning tasks such as machine translation with Transformers, language modeling with BERT, click-through rate prediction on Criteo, and image classification on ImageNet with ResNet-50.
277 - Remi Jezequel 2020
We consider the setting of online logistic regression and consider the regret with respect to the 2-ball of radius B. It is known (see [Hazan et al., 2014]) that any proper algorithm which has logarithmic regret in the number of samples (denoted n) n ecessarily suffers an exponential multiplicative constant in B. In this work, we design an efficient improper algorithm that avoids this exponential constant while preserving a logarithmic regret. Indeed, [Foster et al., 2018] showed that the lower bound does not apply to improper algorithms and proposed a strategy based on exponential weights with prohibitive computational complexity. Our new algorithm based on regularized empirical risk minimization with surrogate losses satisfies a regret scaling as O(B log(Bn)) with a per-round time-complexity of order O(d^2).
We uncover a fairly general principle in online learning: If regret can be (approximately) expressed as a function of certain sufficient statistics for the data sequence, then there exists a special Burkholder function that 1) can be used algorithmic ally to achieve the regret bound and 2) only depends on these sufficient statistics, not the entire data sequence, so that the online strategy is only required to keep the sufficient statistics in memory. This characterization is achieved by bringing the full power of the Burkholder Method --- originally developed for certifying probabilistic martingale inequalities --- to bear on the online learning setting. To demonstrate the scope and effectiveness of the Burkholder method, we develop a novel online strategy for matrix prediction that attains a regret bound corresponding to the variance term in matrix concentration inequalities. We also present a linear-time/space prediction strategy for parameter free supervised learning with linear classes and general smooth norms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا