ﻻ يوجد ملخص باللغة العربية
Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an un-gated thermionic cathode RF gun to high average current machines.
Undesirable electron field emission (a.k.a. dark current) in high gradient RF photocathode guns deteriorates the quality of photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resol
KEK-ATF is studying the low-emittance multi-bunch electron beam for the future linear collider. In ATF, thermionic gun is used to generate 20 bunches electron beam with the bunch spacing of 2.8 ns. Due to a distortion of the gun emission and the beam
CW photoinjectors operating at high accelerating gradients promise to revolutionize many areas of science and applications. They can establish the basis for a new generation of monochromatic X-ray free electron lasers, high brightness hadron beams, o
Proposed fourth generation light sources using SASE FELs to generate short pulse, coherent, X-rays require demonstration of high brightness electron sources. The Gun Test Facility (GTF) at SLAC was built to test high brightness sources for the propos
Future colliders that require low-emittance highly-polarized electron beams are the main motivation for developing a polarized rf gun. However there are both technical and physics issues in generating highly polarized electron beams using rf guns tha