ﻻ يوجد ملخص باللغة العربية
We show that gravity and matter fields are generically entangled, as a consequence of the local Poincare symmetry. First, we present a general argument, applicable to any particular theory of quantum gravity with matter, by performing the analysis in the abstract nonperturbative canonical framework, demonstrating the nonseparability of the scalar constraint, thus promoting the entangled states as the physical ones. Also, within the covariant framework, we show explicitly that the Hartle-Hawking state in the Regge model of quantum gravity is necessarily entangled. Our result is potentially relevant for the quantum-to-classical transition, taken within the framework of the decoherence programme: due to the gauge symmetry requirements, the matter does not decohere, it is by default decohered by gravity. Generically, entanglement is a consequence of interaction. This new entanglement could potentially, in form of an effective interaction, bring about corrections to the weak equivalence principle, further confirming that spacetime as a smooth four-dimensional manifold is an emergent phenomenon. Finally, the existence of the gauge-protected entanglement between gravity and matter could be seen as a criterion for a plausible theory of quantum gravity, and in the case of perturbative quantisation approaches, a confirmation of the persistence of the manifestly broken gauge symmetry.
$f(R,T)$ gravity was proposed as an extension of the $f(R)$ theories, containing not just geometrical correction terms to the General Relativity equations, but also material correction terms, dependent on the trace of the energy-momentum tensor $T$.
We review and extend the Gauge Vectors-Tensor gravity: a covariant theory of gravity composed of a metric and gauge fields, leading to simple second order partial differential equations of motion, whose Newtonian and strong limits coincide to those o
We show that Liouville gravity arises as the limit of pure Einstein gravity in 2+epsilon dimensions as epsilon goes to zero, provided Newtons constant scales with epsilon. Our procedure - spherical reduction, dualization, limit, dualizing back - pass
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry.
In a spacetime divided into two regions $U_1$ and $U_2$ by a hypersurface $Sigma$, a perturbation of the field in $U_1$ is coupled to perturbations in $U_2$ by means of the holographic imprint that it leaves on $Sigma$. The linearized gluing field eq