ﻻ يوجد ملخص باللغة العربية
$f(R,T)$ gravity was proposed as an extension of the $f(R)$ theories, containing not just geometrical correction terms to the General Relativity equations, but also material correction terms, dependent on the trace of the energy-momentum tensor $T$. These material extra terms prevent the energy-momentum tensor of the theory to be conserved, even in a flat background. Energy nonconservation is a prediction of quantum theory with time-space noncommutativity. If time is considered as an operator and there are compact spatial coordinates which do not commute with time, then the time evolution gets quantized and energy conservation can be violated. In the present work we construct a model in a 5-dimensional flat spacetime consisting of 3 commutative spatial dimensions and 1 compact spatial dimension whose coordinate does not commute with time. We show that energy flows from the 3-dimensional commutative slice into the compact extra dimension (and vice-versa), so that conservation of energy is restored. In this model the energy flux is proportional to the energy density of the matter content, leading to a differential equation for $f(R,T)$, thus providing a physical criterion to restrict the functional form of $f(R,T)$. We solve this equation and analyze the behavior of its solution in a spherically symmetric context.
Wormholes are a solution for General Relativity field equations which characterize a passage or a tunnel that connects two different regions of space-time and is filled by some sort of exotic matter, that does not satisfy the energy conditions. On th
In this paper, we employ mimetic $f(R,T)$ gravity coupled with Lagrange multiplier and mimetic potential to yield viable inflationary cosmological solutions consistent with latest Planck and BICEP2/Keck Array data. We present here three viable inflat
The recently proposed $f(Q, T)$ gravity (Xu et al. Eur. Phys. J. C textbf{79} (2019) 708) is an extension of the symmetric teleparallel gravity. The gravitational action $L$ is given by an arbitrary function $f$ of the non-metricity $Q$ and the trace
The recent article entitled Cosmological inviability of $f(R,T)$ gravity [Phys. Rev. D 95 (2017) 123536], by H. Velten and T.R.P. Caram^es, claims that the reference A transition from a decelerated to an accelerated phase of the universe expansion fr
We present a traversable wormhole solution using the traceless $f(R,T)$ theory of gravity. In the $f(R,T)$ gravity, the Ricci scalar $R$ in the Einstein-Hilbert action is replaced by a function of $R$ and trace of the energy momentum tensor $T$. The