ﻻ يوجد ملخص باللغة العربية
We present a method of sensing AC magnetic fields. The method is based on the construction of a robust qubit by the application of continuous driving fields. Specifically, magnetic noise and power fluctuations of the driving fields do not operate within the robust qubit subspace, and hence, robustness to both external and controller noise is achieved. We consider trapped-ion based implementation via the dipole transitions, which is relevant for several types of ions, such as the $^{40}{rm{Ca}}^{+}$, $^{88}{rm{Sr}}^{+}$, and the $^{138}{rm{Ba}}^{+}$ ions. Taking experimental errors into account, we conclude that the coherence time of the robust qubit can be improved by up to $sim 4$ orders of magnitude compared to the coherence time of the bare states. We show how the robust qubit can be utilized for the task of sensing AC magnetic fields, leading to an improvement of $sim 2$ orders of magnitude of the sensitivity. In addition, we present a microwave based sensing scheme that is suitable for ions with a hyperfine structure, such as the $^{9}{rm{Be}}^{+}$,$^{25}{rm{Mg}}^{+}$,$^{43}{rm{Ca}}^{+}$,$^{87}{rm{Sr}}^{+}$,$^{137}{rm{Ba}}^{+}$,$^{111}{rm{Cd}}^{+}$,$^{171}{rm{Yb}}^{+}$, and the $^{199}{rm{Hg}}^{+}$ ions. This scheme enables the enhanced sensing of high frequency fields at the GHz level.
Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of
Quantum computers hold the promise to solve certain computational task much more efficiently than classical computers. We review the recent experimental advancements towards a quantum computer with trapped ions. In particular, various implementations
Developing the isolation and control of ultracold atomic systems to the level of single quanta has led to significant advances in quantum sensing, yet demonstrating a quantum advantage in real world applications by harnessing entanglement remains a c
We consider the quantum simulation of relativistic quantum mechanics, as described by the Dirac equation and classical potentials, in trapped-ion systems. We concentrate on three problems of growing complexity. First, we study the bidimensional relat
We propose the quantum simulation of the quantum Rabi model in all parameter regimes by means of detuned bichromatic sideband excitations of a single trapped ion. We show that current setups can reproduce, in particular, the ultrastrong and deep stro