ﻻ يوجد ملخص باللغة العربية
We study the online constrained ranking problem motivated by an application to web-traffic shaping: an online stream of sessions arrive in which, within each session, we are asked to rank items. The challenge involves optimizing the ranking in each session so that local vs. global objectives are controlled: within each session one wishes to maximize a reward (local) while satisfying certain constraints over the entire set of sessions (global). A typical application of this setup is that of page optimization in a web portal. We wish to rank items so that not only is user engagement maximized in each session, but also other business constraints (such as the number of views/clicks delivered to various publishing partners) are satisfied. We describe an online algorithm for performing this optimization. A novel element of our approach is the use of linear programming duality and connections to the celebrated Hungarian algorithm. This framework enables us to determine a set of emph{shadow prices} for each traffic-shaping constraint that can then be used directly in the final ranking function to assign near-optimal rankings. The (dual) linear program can be solved off-line periodically to determine the prices. At serving time these prices are used as weights to compute weighted rank-scores for the items, and the simplicity of the approach facilitates scalability to web applications. We provide rigorous theoretical guarantees for the performance of our online algorithm and validate our approach using numerical experiments on real web-traffic data from a prominent internet portal.
In this paper we propose a primal-dual homotopy method for $ell_1$-minimization problems with infinity norm constraints in the context of sparse reconstruction. The natural homotopy parameter is the value of the bound for the constraints and we show
We propose an extended primal-dual algorithm framework for solving a general nonconvex optimization model. This work is motivated by image reconstruction problems in a class of nonlinear imaging, where the forward operator can be formulated as a nonl
In this paper, we consider the problem of recovering a sparse signal based on penalized least squares formulations. We develop a novel algorithm of primal-dual active set type for a class of nonconvex sparsity-promoting penalties, including $ell^0$,
This paper investigates accelerating the convergence of distributed optimization algorithms on non-convex problems. We propose a distributed primal-dual stochastic gradient descent~(SGD) equipped with powerball method to accelerate. We show that the
This paper proposes TriPD, a new primal-dual algorithm for minimizing the sum of a Lipschitz-differentiable convex function and two possibly nonsmooth convex functions, one of which is composed with a linear mapping. We devise a randomized block-coor