ﻻ يوجد ملخص باللغة العربية
Thermal properties of suspended single-layer graphene membranes are investigated by characterization of their mechanical motion in response to a high-frequency modulated laser. A characteristic delay time $tau$ between the optical intensity and mechanical motion is observed, which is attributed to the time required to raise the temperature of the membrane. We find, however, that the measured time constants are significantly larger than the predicted ones based on values of the specific heat and thermal conductivity. In order to explain the discrepancy between measured and modeled tau, a model is proposed that takes a thermal boundary resistance at the edge of the graphene drum into account. The measurements provide a noninvasive way to characterize thermal properties of suspended atomically thin membranes, providing information that can be hard to obtain by other means.
We measure the thermal time constants of suspended single layer molybdenum disulfide drums by their thermomechanical response to a high-frequency modulated laser. From this measurement the thermal diffusivity of single layer MoS$_2$ is found to be 1.
Graphene exhibits extraordinary electronic and mechanical properties, and extremely high thermal conductivity. Being a very stable atomically thick membrane that can be suspended between two leads, graphene provides a perfect test platform for studyi
We propose a framework for inducing strong optomechanical effects in a suspended carbon nanotube based on deformation potential exciton-phonon coupling. The excitons are confined using an inhomogeneous axial electric field which generates optically a
The optomechanical coupling of quantum dots and flexural mechanical modes is studied in suspended nanophononic strings. The investigated devices are designed and monolithically fabricated on an (Al)GaAs heterostructure. Radio frequency elastic waves
The tuning of electrical circuit resonance with a variable capacitor, or varactor, finds wide application with the most important being wireless telecommunication. We demonstrate an electromechanical graphene varactor, a variable capacitor wherein th